
A Short Introduction to POV-Ray

Peter Fischer, ZITI, Heidelberg University

1A Short Introduction to POV-Ray © Peter Fischer

What is POV-Ray ?

§ A software to produce 3D images

§ Very easy to use (in my opinion)
• Simple concept to generate complex shapes
• Can define new objects easily
• Can do mathematics & calculations & loops & ...

§ Can obtain very high quality
• Based on Ray Tracing
• Many 3D textures
• Many illumination schemes

§ Open source standard – many examples available

2A Short Introduction to POV-Ray © Peter Fischer

Why Use & Know About POV-Ray ?

§ 3D images are good to illustrate presentations or documents

3A Short Introduction to POV-Ray © Peter Fischer

Illustration of a Sensor Module

A Short Introduction to POV-Ray © Peter Fischer 4

Another Example

(Light path around earth in 1 second)

5A Short Introduction to POV-Ray © Peter Fischer

Illustration of your Experimental Setup

§ Here: Microscope Parts

6A Short Introduction to POV-Ray © Peter Fischer

Another Example

§ Taken from a PhD Thesis (N. Camus) on Optics

7A Short Introduction to POV-Ray © Peter Fischer

Where to get POV-Ray and help ?

§ POVRAY is open source:
• Main site: www.povray.org
• Extensions: megapov.inetart.net
• For Mac: megapov.inetart.net/povrayunofficial_mac
• Wiki: wiki.povray.org/content/Main_Page
• Tutorial: de.wikibooks.org/wiki/Raytracing_mit_POV-Ray
• Tutorial: www.f-lohmueller.de/pov_tut/pov__ger.htm

§ Windows / MAC versions
comes with integrated editor

§ Linux version is
command line tool

8A Short Introduction to POV-Ray © Peter Fischer

http://www.povray.org/
http://wiki.povray.org/content/Main_Page
http://megapov.inetart.net/povrayunofficial_mac
http://wiki.povray.org/content/Main_Page
http://de.wikibooks.org/wiki/Raytracing_mit_POV-Ray
http://www.f-lohmueller.de/pov_tut/pov__ger.htm

POV-Ray for MAC

§ Available since 2013. Not supported any more ☹
§ ‘Unofficial’ version. Implements latest version 3.7
§ Several additional useful dialogs:

• Colour Editor, Texture Editor, Options Dialog,

9A Short Introduction to POV-Ray © Peter Fischer

Have a Look at this Phantastic Web-Site:

§ The site www.f-lohmueller.de offers a very wide range of
• Tutorials
• Examples (with source codes)
• Animations
• Textures
• Shapes
• ... (much more)...
• ... (much more)...

§ Pages are available in German / English / French / Italian

§ There are many tricky details explained on that site!

10A Short Introduction to POV-Ray © Peter Fischer

Go and see it!

http://www.f-lohmueller.de/

Command Line Options (Linux, CIP Pool)

§ Start for instance with
povray +Ifile.pov +H400 +W400 +SP8 +Q8 +A0.3 +P +fn

§ Options shown are:
+Ifile.pov : input file (do not forget ‘+I’ !!!)
+H400 : image height in pixels
+W400 : image width in pixels
+SP8 : generate every 8th pixel first, then every 4th etc.

(does not work in CIP Pool!)
+Q8 : quality: 1.., higher = better & slower (8=reflections...)
+A0.3 : anti-aliasing setting (slower)
+P : pause after rendering (to admire the picture)
+fn : output format = .png (default on Linux)

§ To get more information:
-H : show all options

11A Short Introduction to POV-Ray © Peter Fischer

Using a Configuration File

§ Options can be put into a par.ini file.
§ It can contain several sections. Example:

§ Rendering using section hi in par.ini is started by:
povray par[hi] +Ifile.pov

12A Short Introduction to POV-Ray © Peter Fischer

; POV-Ray configuration file example

; common options
+SP8 ; start with every 8th pixel
+Q8 ; quality is high
+A0.3 ; anti aliasing
+P ; pause after rendering

[lo] ; options in section ‘[lo]’
+W150 ; lo res image width
+H100 ; lo res image height

[hi] ; another section
+W600 ; hi res image width
+H400 ; hi res image height

A First Example

A Short Introduction to POV-Ray © Peter Fischer 13

#include "colors.inc"
#include "woods.inc"
#include "glass.inc"
cylinder {
<-2,-2,0.5>, <-2,1,0.5>, 1
pigment {color Red}

}
sphere {
<0,1,1>, 1
texture{ T_Wood20 scale 3 }

}
box {
<-3,-1,-1>, <1,-0.5, 2>
pigment {Col_Glass_Winebottle}

}
background { color White }
light_source {<0, 5, -3> color White }
light_source {<-2, 2, 0.5> color Yellow }
camera {
location <0, 2, -6>
angle 50 right x
look_at <-1, 0, 0>

}

Red
cylinder

Wooden
sphere

transparent
box

illumination

Position of
camera

HelloWorld.pov

The Coordinate System

§ Remember: X and Y are like in Mathematics
§ Positive Z is ‘into the screen’

• note: This is a LEFT-handed coordinate system

14A Short Introduction to POV-Ray © Peter Fischer

Vectors, Directions & Rotations

§ A vector (position or direction) is given by:
<cx,cy,cz>

§ It can be multiplied with numbers (floats):
factor * <cx,cy,cz>

§ Predefined vectors are the 3 axes:
x (= <1,0,0>)
y (= <0,1,0>)
z (= <0,0,1>)

§ Arithmetic expressions can be used everywhere:
x + 3*y
<rand(rnd1) * sqrt(2), pi/2, log(3)>

§ Trigonometric functions use (and deliver) radian!
180 / 3.141 * atan(dy/dx)

15A Short Introduction to POV-Ray © Peter Fischer

Vector as Rotation Axis

§ Vectors are also used for rotations:
• The direction of the vector is the rotation axis
• The length of the vector is the angle (in degrees)
• left hand rotation sense is used (for positive angle values)

16A Short Introduction to POV-Ray © Peter Fischer

63.6 * <3,3,0>

This are 270 degrees
because the length of
vector = √(32+32+02)

270 * <0,1,0>
or

270 * y

Technicalities: Comments & Definitions

§ POV-Ray is caseSensiTIve
§ Comment lines start with //:
// comment

§ Comment blocks are done as in C:
/* ... (can be multiple lines) ... */

§ Constants or frequently used expressions are defined by:
#declare name = ... ;
• Note: #define does not work
• A semicolon is required! (No Semicolon is required after ‘}’)

§ Parameters can be passed by defining a ‘macro’:
#macro name (parameters,..)

...
#end

17A Short Introduction to POV-Ray © Peter Fischer

The Camera

18A Short Introduction to POV-Ray © Peter Fischer

§ It has a position: location <point>
§ The viewing direction can be set by: look_at <point>

location <2,3,-4>
look_at <2,0,0> // red sphere

location <2,3,-4>
look at <1,1,0> // red sphere

More Camera Positions

§ The two scenes look at the same (red) point <1,1,0> from
different camera positions

19A Short Introduction to POV-Ray © Peter Fischer

From below the x-z-ground
plane, from left side. From ‘behind’

Camera: Viewing Angle

§ viewing angle angle <value> sets
• small value: ‘Tele’ (low distortion)
• large value: ‘Wide angle’
• very large value: ‘Fish Eye’ (significant bending of straight lines)

20A Short Introduction to POV-Ray © Peter Fischer

angle 60angle 30

Camera: Aspect Ratio

§ A nasty detail is that we must tell the renderer the aspect
ratio (width / height) of the image to avoid distortion

§ This ratio is best set to the rendering command values:
right x * image_width / image_height

21A Short Introduction to POV-Ray © Peter Fischer

Rendering: +H400 +W400
File: right x * 1.0

Rendering: +H200 +W400

File: right x * 1.0

Rendering: +H200 +W400

File: right x * 2.0

Camera: All together

§ A typical camera command is

§ The default camera (if no camera is defined) is

22A Short Introduction to POV-Ray © Peter Fischer

camera {
location <1, 1, -6>
look_at <0, 1, 0>
angle 50
right x * image_width / image_height

}

camera {
perspective
location <0,0,0>
direction <0,0,1>
right 4.0 / 3.0 * x
up y
sky <0,1,0>

}

Light Sources

§ They can be point sources, area sources or spotlights, ...

§ Use background {color xxx} to color the ‘sky’
§ Use global_settings {ambient_light color} to get

diffuse light on all surfaces. (More light with …10*<1,0,0>)

23A Short Introduction to POV-Ray © Peter Fischer

light_source {
<position>
color ...

}

light_source {
<position>
area_light
// parameters..

}

light_source {
<position>
spotlight
// parameters..

}

Light Sources

§ Light Sources can have color:
• Image shows a white sphere. Look at sphere color & shadows!

24A Short Introduction to POV-Ray © Peter Fischer

No green light here:
Plane is red

Lights are normally invisible. I added the
spheres to show where they are..

(Note)

§ The order of commands in light source definitions matters,
some combinations give syntax errors…

25A Short Introduction to POV-Ray © Peter Fischer

light_source {
<-1,2,-2>
color White
spotlight // ERROR if used before
point_at <0,0,0> // 'color' line!!!
radius 50.0
falloff 200.0
tightness 5

}

Simple Objects

§ Simple objects are:
•sphere { <location>, radius }
•box { <corner>, <opposite_corner> }
•cylinder { <p1>, <p2>, radius }
•cone { <p1>, r1, <p2>, r2 }
•plane { <normal>, dist_origin }
•torus { rlarge, rsmall } // in x-y plane

§ They can be colored (surface & volume!) using
•pigment {color rgb <r, g, b>}

or just
•pigment {color <r, g, b>}

§ Transparency can be added by a 4th parameter
•pigment {color rgbt <r, g, b, t>}

§ Predefined colors from "colors.inc" are Red, White,..

26A Short Introduction to POV-Ray © Peter Fischer

rlarge

rsmall

Example

#include "colors.inc“

sphere { < 0, 5, 0>, 1
pigment {color Blue}
finish { phong 0.9 phong_size 60 }

}
cylinder { <-1, 3, -1>, <1, 3.5, 1>, 0.5
pigment {color <1,0,0>}

}
cone {
<-1, 1.5, -1>, 0.8, <1, 1, 1>, 0.1
pigment {color rgbt <1,1,0,0.5>}

}
box { <-1,0,-1>, <1, 0.5, 1>
pigment {color Magenta}

}
plane { y,-1
pigment {checker Gray80, White}

}

background { color White }
light_source {<-2,5,-3> color White }
light_source {<2,2,-1.5> color Yellow }

camera {
location <0, 1, -6>
angle 40 right x * 400 / 800
look_at <0,2,0>

}

27A Short Introduction to POV-Ray © Peter Fischer

background
=

color where
NO object is

Exercise 1

§ Enter the minimal POV-Ray file
sphere {
<0,0,3>, 1
pigment { color <1,0,0> }
}
light_source { <1,1,1> color <1,1,1> }

§ Render it using
povray +IPOV_Mini +H300 +W400 +P

§ Then
• Use #include "colors.inc“ and use White, Red,...
• Change the sphere to a box
• Change the background
• Add a camera (otherwise it is at <0,0,0>) and move it around
• … play around ...

28A Short Introduction to POV-Ray © Peter Fischer

Exercise 2

§ Create the following scene (just the red stuff, no blue axes)
• The centre of the sphere is at <-2,0,0>
• put the camera at <-1,2,-5>

29A Short Introduction to POV-Ray © Peter Fischer

Moving and Rotating Things

§ Objects can be moved, scaled & rotated:
•translate <shift_vector>
•scale <scalex, scaley, scalez> (or scale val)
•rotate <vector> (vector defines direction & angle)

§ Example:

30A Short Introduction to POV-Ray © Peter Fischer

box {
<-1,-1,-1>, <1,1,1>
pigment {color Red}
scale <2,1,1>
rotate 30*z
translate 3*z

}

Rotations & Translations are not Commutative!

A Short Introduction to POV-Ray © Peter Fischer 31

box {
<-1,-1,-1>, <1,1,1>
translate 2*x
rotate 45*z

}

box {
<-1,-1,-1>, <1,1,1>
rotate 45*z
translate 2*x

}

1

2

2

1

(Exercise 3 – not so easy…some have solved this!)

§ The painting
‘Waterfall’ from
M.C.Escher contains
two geometric figures

§ Draw the left one,
which consists of 3
rotated cubes!

33A Short Introduction to POV-Ray © Peter Fischer

Picture removed. See web site of university:

https://en.wikipedia.org/wiki/Waterfall_(M._C._Escher)

Instantiating and Merging Objects

§ Several Objects can be grouped with
•union { objects … transformations … pigment …}

§ Objects can be predefined by #declare name = …;
§ A #declared object can be instantiated with
•object{ name … pigment …}

34A Short Introduction to POV-Ray © Peter Fischer

#declare H = 0.5;
#declare CUBE = box {<-H,-H,-H>,<H,H,H>}

#declare TWO = union {
object {CUBE translate -x}
sphere {x, 0.5}
pigment {color Red}
scale 1.5

}

object {TWO rotate 45 * z}
object {TWO translate 2*z

pigment {color Green}
}

...

Exercise 4

§ Create the following scene using the object from Exercise 2:

§ Define first a union containing sphere, cylinder and cube
§ Instantiate three of these with appropriate shifts / rotates
§ Change the pigment of one part to Green

35A Short Introduction to POV-Ray © Peter Fischer

(Exercise 6)

§ Make a rounded cube by adding spheres to the corners and
cylinders to the edges
• You may keep (inner) cube size and corner radius variable

using
#macro CUBE (D,R) ..code using D and R.. #end

• Hint: You can assemble the cube from 4 face-objects (as shown
on the right) and two ‘covers’ made from boxes

37A Short Introduction to POV-Ray © Peter Fischer

COMPLICATED OBJECTS

Making Complex Shapes, Cutting Things

§ Constructive Solid Geometry (CSG) allows to construct
complex shapes from simple shapes.

§ Commands to cut objects are:
• Volume covered by both objects (A and B):
intersection { objA objsB } //several Bs ok

• Volume covered by A and not B (A and !B):
difference { objA objsB } //several Bs ok

§ We also have
• Volume covered by (A or B), inner faces stay

(just group objects, e.g. to translate them together)
union { obj1 obj2 }

• Volume covered by (A or B), inner faces are removed
(useful for transparent objects)
merge { obj1 obj2 }

39A Short Introduction to POV-Ray © Peter Fischer

Examples for CSG

A Short Introduction to POV-Ray © Peter Fischer 40

union {
object {S}
object {B}

}

difference {
object {S}
object {B}

}

difference {
object {B}
object {S}

}

intersection {
object {B}
object {S}

}

S: B:

More Examples for CSG

A Short Introduction to POV-Ray © Peter Fischer 41

difference {
object {S}
object {B}

}

difference {
object {B}
object {S}

}

intersection {
object {B}
object {S}

}

difference {
object {B}
object {S inverse}

}

‘inverse’ exchanges
inside and outside

B: S:

Exercise 7: Dice

§ Make a (Game) Dice
• This is the difference of a cube with the inverse of a large

sphere and several small spheres

42A Short Introduction to POV-Ray © Peter Fischer

Exercise 8

§ Create the following scene

§ The blue ring is a flat cylinder merged with a torus, cut by a
(higher) central cylinder

§ The green triangle is the intersection of 5 planes
(One of the 3 vertical sides is plane{x,0.5 rotate 120*y})

43A Short Introduction to POV-Ray © Peter Fischer

Textures

§ Textures define the surface & volume appearance
§ They consist of, for instance

texture {

pigment {color ...} // color, transparency
finish { // surface properties
ambient 0...1 // emitted light
diffuse 0...1 // % of light reflected in a diffuse way
reflection 0...1 // % of light reflected in a specular way
phong 0...1 // intensity of highlights
phong_size 60 // size of highlights
... // many more (see documentation!)

}
normal {bumps 2 scale 0.5} // surface roughness

}

44A Short Introduction to POV-Ray © Peter Fischer

Example for Surface Properties

#include "colors.inc“ #include "woods.inc“
plane {y, 0 pigment { checker Green, Red rotate 10*y} } // note that checker is rotated!
sphere { y, 1 finish {reflection 1.5} } // fully reflective sphere
sphere { y-2*x-z, 1 pigment {color Blue} finish {reflection 0.5 phong 0.5 phong_size 80} }
box { <1.5,0,-2>, <2.5,2,0> texture{ T_Wood20 scale 5 rotate 30*z+80*x} }
background { color LightBlue }
light_source {<0, 5, -3> color 2*White } light_source {<4, 5, -3> color White }
camera { location <0.5, 2.1, -10> look_at <-0.2,0.8,0> angle 40 right 2*x }

45A Short Introduction to POV-Ray © Peter Fischer

(Rendering Quality)

§ The previous scene rendered with different +Q levels:

46A Short Introduction to POV-Ray © Peter Fischer

+Q1 only shapes +Q3 surfaces, no shadows

+Q7 shadows, no reflections +Q8 reflections

Predefined Texture

§ Many textures are available in the include files
#include "stones.inc"
#include "woods.inc“ etc.

§ For an overview, see for instance http://texlib.povray.org

47A Short Introduction to POV-Ray © Peter Fischer

http://texlib.povray.org/

(Rotating and Scaling Textures)

§ Textures can be rotated and scaled inside the object:

48A Short Introduction to POV-Ray © Peter Fischer

#declare C = box {
<-0.4,-0.4,-1>,<0.4,0.4,1>

}
#declare T = DMFWood3;

object { C
texture {T}
translate y

}

object { C
texture {T rotate -20*y}

}

object { C
texture {T scale 3}
translate –y

}

(Self Made Volume Textures)

§ There are many options to define (volume) textures.
§ Just one example: Layered colours

49A Short Introduction to POV-Ray © Peter Fischer

#include "colors.inc“
plane {y,-2 pigment{hexagon Gray80 White Gray90}}
difference {
sphere { <0,0,0>, 1 }
cylinder {-2 * y, 2*y, 0.6 rotate -45*x}
pigment {
gradient <0,1,1> // orientation
color_map { // colors in range 0...1
[0.1 color Red] [0.3 color Blue]
[0.7 color Green] [1.0 color Red]

}
scale 0.8

}
}
background { color White }
light_source {<0, 5, -3> color White }
light_source {<-2, 0.5, -2> color 1.5*White }
camera {
location <-1.0, 2.0, -5> look_at <0,0,0>
angle 30 right x*image_width/image_height

}

(More Stuff: Bump Maps)

§ The surface normal (used to calculate how light is reflected)
can be disturbed with various pattern. This gives
spectacular ‘bumpy’ surfaces.
• Many examples at www.f-lohmueller.de/pov_tut/tex/tex_000d.htm

50A Short Introduction to POV-Ray © Peter Fischer

http://www.f-lohmueller.de/pov_tut/tex/tex_000d.htm

Programming

Just two examples:

§ Conditional blocks:

§ Loops

51A Short Introduction to POV-Ray © Peter Fischer

#if (VERSION=1) // NOTE: only one ‘=‘
...

#end

#declare angle = 0;
#while(angle < 360)
...
#declare angle = angle + 60;

#end

Programming Example

A Short Introduction to POV-Ray © Peter Fischer 52

#include "textures.inc"

cylinder {-0.2*y, -0.1*y, 2.5
texture {Silver_Metal}

}
#declare S = sphere {2*x, 0.5
texture {EMBWood1}

}

#declare phi = 0;
#while(phi < 360)
object { S rotate phi * y}
#declare phi = phi + 40;

#end

background { color White }
light_source {<0, 5, -3> color White }
light_source {<-2,2,0.5> color Yellow }

camera {
location <0, 4, -5>
look_at <0,-0.5,0>
angle 50 right 6/4*x

}

Animations

§ Several renderings can be done in a batch job
§ The value of clock is incremented in each frame from a

start to an end value in predefined steps
§ Rendering creates a series of images
§ The sequence of images can be merged to a movie

§ See Demo, or for instance
• http://www.alzinger.de/cms5/robert/raytracing/raytracing-

video.html
• http://www.alzinger.de/cms5/robert/raytracing/marble-machine-

in-povray.html

53A Short Introduction to POV-Ray © Peter Fischer

http://www.alzinger.de/cms5/robert/raytracing/raytracing-video.html
http://www.alzinger.de/cms5/robert/raytracing/marble-machine-in-povray.html

Common Problems

§ No light
• Put a light source at the camera position (no nice illumination,

but light everywhere)
• use global_settings {ambient_light color}

• add finish {ambient…) to shapes

§ Bad camera
• Make sure you are not inside a shape
• Move camera far away to start with
• Use large angle
• Use look_at

54A Short Introduction to POV-Ray © Peter Fischer

Other Tools

§ OpenScenegraph
• Free tool
• Graphic editor
• Animation and Collision detection

§ Blender
• Graphics editor, very powerful, animation, games, characters

55A Short Introduction to POV-Ray © Peter Fischer

An alternative to POV-Ray (?): VRML

§ VRML = Virtual Reality Modeling Language

§ Is a 3D Scene description language similar to POV-Ray
§ Can be rendered in real time

• Viewer for instance from http://www.instantreality.org
• Cortona3D browser plugin is not free any more

§ User interaction is possible

§ Much less powerful graphics, but interactive

§ VRML has not really become a standard.
Plugin installation not standard

§ Seems to die out… (replaced by X3D and others)

56A Short Introduction to POV-Ray © Peter Fischer

