

Exercise: Abstract Circuits

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

Exercise 1: voltage controlled current source

The drain current in a transistor depends on the gate voltage. It can therefore be considered as a voltage controlled current source 'vccs'

- In the analogLib, the vccs has a differential input and two outputs of opposite signs: i₁ = G (v₁ - v₂), i₂ = - i₁
- Set up the following circuit
 - Use a vccs with gain = 100 μS
 - Connect v₋ to ground and v₊ to a dc voltage V_{IN}
 - Connect the i_1 and i_2 outputs to $V_{OUT1} = 1V$ and $V_{OUT2} = 1V$

Now

- Sweep VIN (DC sweep, for instance from -1V to 1V) and observe the currents in the output voltage sources. Change the gain of the vccs and observe the effect.
- Does the output current for a given V_{IN} depend on the V_{OUT}?

Exercise 2: Idealized Amplifier 1

- Implement the following circuit:
 - The current from the vccs is sent to a resistor R
- Start with
 - $G = 100 \mu S$
 - R = 2 kO
 - $V_0 = 1 V$

- How does v_{OUT} change when v_{IN} changes (e.g. from 0 to 1 V)?
- Explain (Calculate)! Write down the current equation at node v_{out} and use $i_{VCCS} = G v_{in}$
- What is the gain of the circuit dV_{OUT} / dV_{IN}?
- Change R and G in your simulation. Is the effect as expected (as calculated)?

Exercise 3: Idealized Amplifier 2

- In the previous circuit, change V₀. What happens with the *DC* offset of the output and with the gain? Explain!
- So, what is the difference between the following two circuits A,B?

- PREDICT the gain (V_{IN}→V_{OUT})
 of the following circuit (Thénevin!):
- Verify this by simulation (for instance R1 = 1 k Ω , R2 = 2 k Ω)
- What happens when you exchange R1 and R2?

Exercise 4: Idealized Amplifier 3

- Load the output with a capacitor (1 pF) to ground (left) and make an *ac* sweep. What is the dc gain?
- Where is the corner frequency? Why?

- Now try the right circuit. Is there a difference? Explain!
- Draw an equivalent circuit without V₀!

Exercise 5 (advanced!): More capacitors

Consider this circuit with an extra C₁ between V_{IN} and V_{OUT}

- Draw the circuit without V₀!
- What gain do you expect at dc? Sign?
- What gain do you expect for very high frequencies? Sign?
- Calculate the transfer function H[s] and the gain
 - Verify your predictions
- Simulate the circuit

Exercise 5 cont. (For fun)

- Where is the pole, where is the zero?
- Chose the resistor value such that the pole and the zero are at the same frequency.
 - Does that always work?
 - What is the DC gain?
 - How does the transfer function look like?
 - What is the gain of the circuit vs. frequency?