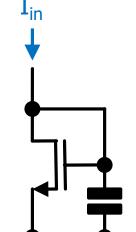


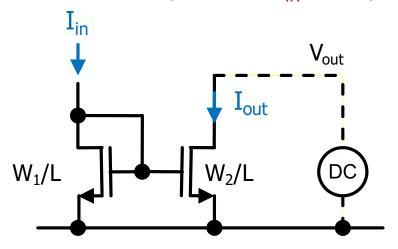
Exercise: Current Mirrors

Prof. Dr. P. Fischer


Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

Exercise: Dynamic Regulation

- Draw a diode connected NMOS
 - Use a 'simple' MOS model
- Connect a large ,extra' capacitance (say, 1pF) to the gate with an *initial condition* of 0 V
 - Set the initial condition ('IC') in the properties of the capacitor
- Send a small current I_{in} (e.g. 1µA) into the ,diode⁶
- Perform a transient simulation
 - Estimate / calculate a reasonable max. time!
- Observe the Input = Gate = Drain Voltage
- Use different initial conditions (0...1.8V, Parametric sweep!)
- Understand how the equilibrium point is reached!
 - Why is settling much faster for a more positive start?
- Vary I_{in}. What changes? Why?



Exercise: A First Mirror

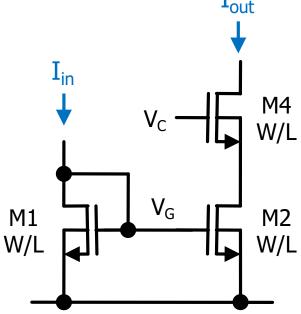
■ Draw the following *current mirror*, with $W_1 = W_2 = 1 \mu m$. Use for instance L = 0.5 μ m and $I_{in} = 10 \mu$ A

- Sweep the output voltage V_{out} and observe the current I_{out}.
 - When is I_{out} = I_{in} exactly? Why?
 - Try another input current, change W₂!
- For fixed I_{in}, W₁,W₂, vary L (same in both MOS). Explain
 - Explain what you see! Compare output slopes and saturation voltages. (See P.15 in lecture slides on mirror)
- Use the 'nmossimple' and the 'nmos' models and compare

Exercise: PMOS Mirror

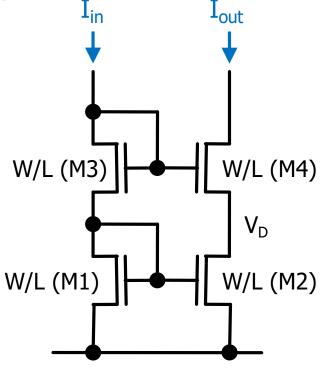
- Draw a PMOS Mirror
- Simulate the output characteristics

Exercise: Triangle Generation


- Simulate the triangle generator from p.13 ('mirror' slides)
 - Use a supply voltage of 2V.
- Chose for instance a capacitor of 1pF and a current of 10µA
 - Start with a capacitor voltage of 0.5V (initial condition)
- For the switches, use can use the 'switch' element from analogLib.
 - You must set the 'close' voltage high than the 'open' voltage.
- Drive the two 'coils' with signals from two vpulse sources of suitable frequency. The two signals must be complementary.
- What slew rate (dU/dT) do you expect?

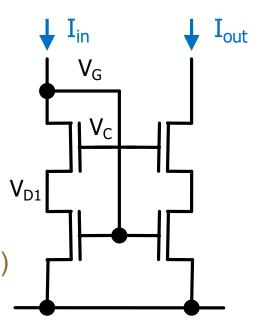
Exercise: A Better Mirror

- The output current varies with V_{out} (i.e. the output resistance is not infinite) due to the Early Effect in M2.
- Try the following circuit:
 - Connect bulk and source in all MOS
 - Start with $V_C = 1.2V$
 - Use $I_{in} = 1uA$
- Sweep V_{out}
 - How is the output resistance now? (You may simulate the ,simple' mirror of the previous exercise in parallel for comparison)


- Calculate the small signal output resistance!
 - You only need to consider M2 and M4 (because V_G is constant)
- Vary V_C (from 0V to 1.8V) and see what happens
 - What is the 'ideal' V_C?

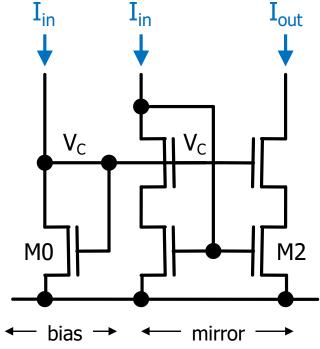
Exercise: A Mirror with Better Matching

- Unfortunately, the previous circuit does NOT reproduce I_{in} exactly. Why?
- Try this circuit (which does not need V_C and more):
 - Connect bulk and source in each MOS
 - It is called the ,stacked mirror'
- Sweep V_{out}
 - Do currents match?
 - What is r_{out}?
 - Where is the saturation?


■ What is the drain voltage V_D of M2? Is that optimal?

Exercise: The Low Voltage Mirror

- In the stacked mirror of the previous exercise, the drain voltage V_D of the current source M2 is fixed by the diode connection of M1.
- This is simple, but provides a too high voltage (by ~V_T!)
- The following circuit connects the diode differently:
 - Understand that the gate voltage V_G still stabilizes to the 'correct' level!
 - We now need to find V_C
 - Sweep V_C from 0.4 to 1.4V in steps of 0.2V
 - What is a good choice?
 - Why do very low voltages fail (check V_G!)
 - What happens at high voltages? Why? (this is tricky to understand... Look at $V_{\rm D1}...$)
 - Note that the 'best' V_C depends in I_{in}

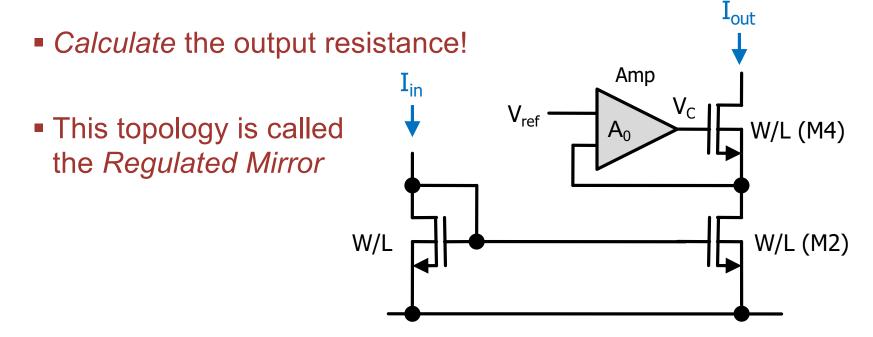


Exercise: The Low Voltage Mirror

■ The required optimal cascode voltage V_C can be generated automatically by a diode connected MOS M0 with different

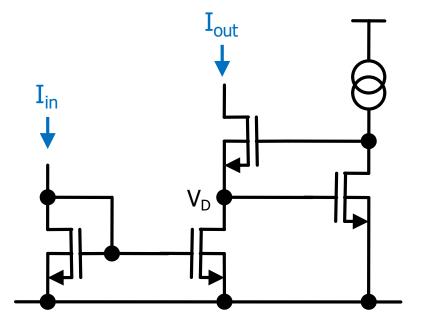
geometry than the others: $(W/L)_0 = k (W/L)_{others}$

 We assume that we have a second input current l_{in} available (boths l_{in}s are equal)


- Calculate k so that M2 is just saturated.
 - Use the *large signal* model in strong inversion with no Early effect
- Simulate the circuit

Exercise: An Even Better Mirror

- The key trick is obviously to keep the drain voltage of M2 very constant irrespective of the output voltage.
- This can be done with an active circuit (with an amplifier):
 - Amp amplifies the difference of the two input voltages by A₀
 - Where is the positive/negative input for stable operation?
 - Simulate the circuit. Use a voltage controlled voltage source vcvs from the analogLib for Amp with A_0 =1000



Exercise (Advanced): Implementing the Regulated Mirror

- The amplifier in Ex. 7 can be implemented by a gain stage
- Simulate such a circuit!
- You can use a Spice current source in the regulation amplifier to start with...
- Explain why V_D is not optimal. Can you use a transistor with low threshold?
- You could also cascode in the gain stage...

