
AC BEHAVIOR OF COMPONENTS



AC Behavior of Capacitor

§ Consider a capacitor driven by a sine wave voltage:

§ The current:

is shifted by 90o (sin ↔ cos)!
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Peak current is high 
for
• large cap
• large voltage
• high frequency…

because charge
must flow in/out
more often in the
same time

Remember:

Capacitor = Storage 

for Charge



Complex Impedance

§ To simplify our calculations, we would like to extend the 
relation R= U/I to capacitors, using an impedance ZC .

§ In order to get the phase right, we use complex quantities:

for voltages and currents.
• By mixing complex and real parts, we can mix sin() and cos() 

components and therefore influence the phase.

§ Note: Often ‘j’ is used instead
of ‘i’ for the complex unit, because
 ‘i’ is used as current symbol…

§ Often ‘s’ is used for iw (or jw)
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Euler Equation!



§ To find (‘back’) the amplitude of such a complex signal, we 
calculate the length (magnitude) of the complex vector as

§ To get the phase, we use real and imaginary parts:

Note: this simple formula works only
in 2 quadrants. You may have to look
at the signs of Re(z) and Im(z)

From Complex Values back to Real Quantities

CCS - Basics P. Fischer, ZITI, Uni Heidelberg, Seite 4

Im(z)

z

Im

Re

z

z*

Re(z)



Hints for Mathematica

§ Mathematica knows complex arithmetic
§ Useful Functions are Abs[] and Arg[]

• Remember: Imaginary Unit is typed as  ESC i i ESC
§ If you want to simplify expression, Math. has to know that 

expressions like w, R, C, U are real (or even positive)
• This can be done with

Assumptions:

• Sometimes
ComplexExpand[]
can be used. It assumes all
arguments are real (but not
necessarily > 0):
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Complex Impedance of the Capacitor

§ We know that 

§ With 

we have 

§ Therefore

§ Similar: 
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The impedance of a 
capacitor becomes 
very small at high 

frequencies



§ For an input voltage (sine wave of freq. w) with phase j= 0

we have

§ The amplitude of I(t) is

§ The phase is (quite complicated…):

Checking this again for a Capacitor
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Simplifying even more

§ As we have just seen, the                           propagates
trivially to the output.

§ We therefore drop this part in the future and just use ‘1’!
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Recipe to Calculate Transfer Functions

§ Replace all component by their complex impedances
(1/(sC), sL, R)

§ Assume a unit signal of ‘1’ at the input

(in reality it is                          )

§ Write down all node current equations or current equalities 
using Kirchhoff’s Law (they depend on s)
• You need N equations for N unknowns

§ Solve for the quantity you are interested in (most often Vout)

§ Analyze the result (amplitude / phase / …)

CCS - Basics P. Fischer, ZITI, Uni Heidelberg, Seite 9



§ Consider

§ We have only one unknown: vout

§ Current equality at node vout: 

§ Solve for vout: 

Example: Low Pass (without load)
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Mathematica Hint 

§ Write down each node equation (here only one):

§ Solve them:

§ Define a transfer function:
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§ The LowPass can be seen as a ‘AC’ voltage divider with 
two impedances Z1 = R and Z2 = 1/sC

§ Using the voltage divider formula, we get

with w0 = 1/(RC), the ‘corner frequency’.
§ This is the same as before…

Low Pass as ‘complex’ voltage divider
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C

The HIGH Pass

§ By exchanging R and C, low frequencies are blocked and 
high frequencies pass through.

§ We get

§ This is the (first order) ‘High-Pass’.
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A More Complicated Example

§ We now have two unknowns: v1, vout

§ Eliminating v1 gives:

§ This is a second order TF. (order = max. exponent of s)
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The same using Mathematica

§ Node equations (here 2):

§ Solve them:

§ Define a transfer function:
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BODE PLOT



Transfer Function (TF)

§ The transfer function of a linear, time invariant system 
visualizes how the amplitude and phase of a sine wave 
input signal of constant frequency w appears at the output

§ The frequency remains unchanged
§ The transfer function H(w) contains

• The phase change F(w)
• The gain v(w) = amp_in / amp_out (w)
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Bode Diagram: Definition

§ The Bode Plot shows gain (+ phase) of the transfer function
§ The frequency (x-axis) is plotted logarithmically
§ Gain is plotted (y-axis) logarithmically, often in decibel

• DB(x) = 20 log10 (x): × 10 +20 dB
 × 100 +40 dB
 × 2   6 dB  (not exactly!)
 × 1   0 dB
 / 2 -6 dB 
 / √2 -3 dB

• dBs for multiplied quantities just add !
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Bode Diagram: Properties

§ Power functions are straight lines:
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Bode Diagram: Properties

§ 1/x function has slope -1:

§ Multiplied functions are added in plot:
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THE LOW PASS FILTER



Analysis of the Low Pass Transfer Function

§ Transfer Function:                                with w0 = 1/RC

§ Magnitude:

§ Phase:
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(rad or degree)



Bode Plot of LowPass (Amplitude)

§ w0 = 10

CCS - Basics P. Fischer, ZITI, Uni Heidelberg, Seite 23

1 / 10
(-20 dB)

x 10 (Decade)

Factor 10 decrease in 
amplitude for factor 10 
increase in frequency.

Slope = -1!
or

-20 dB / decade or
-6 dB / octave

0 dB

-20 dB

-6 dB

-26 dB

-40 dB

v

n / w

1/Sqrt(2) = 0.707
‘-3dB point’

-3 dB

VERY important!



The same in dB
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Bode Plot of LowPass (Phase)

§ w0 = 10
§ Lin-Log Plot!
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Where is the Corner?

§ At the corner frequency w0 = 1/(RC):

§ The impedance of the capacitor is

     1/(sC) = 1/(i w0 C) = R/i

with absolute value R.

§ Therefore: At the corner frequency, the (absolute value) of 
the impedances of the capacitor and the resistor are the 
same.
• C becomes ‘more important’ than R
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Series Connection of two Low Pass Filters

§ Consider two identical LP filters. A ‘unit gain buffer’ makes 
sure that the second LP does not load the first one:

§ From the properties of the LogLog Plot, the TF of the 2nd 
order LP is just the sum of two 1st order LPs:
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Why bother so much about the low pass ?

§ All circuits behave like low-passes (at some frequency)!
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Caveat!

§ So far, frequency is expressed with w, i.e. in radian / second
§ We have: w = 2 p n
§ Therefore, the frequencies in Hertz are 2p lower!!!
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 = 1 / (1M x 1n)
 = 1 / 1m
 = 1 kHz
n = 1000 / 6.28 Hz
 = 160 Hz

dB



Low Pass and High Pass
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Bode Plots with Mathematica

§ Replace s by i w
§ Calculate (squared) gain as absolute value 

§ To plot, convert to dB by taking 20 Log10[√H].
• The sqrt can be eliminated by using 10 Log10[H]

§ For phase, better use ArcTan[Re,Im] to get quadrant right
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A More Complex Example

§ Consider a (High Pass)  filter with an inductor:

§ The transfer function is
§ It is of ‘second order’ (s has exponent of 2 in denominator)
§ Magnitude:

L=C=1
R=0.1,0.5,1,2

§ ‘Resonance’
§ ‘Inductive peaking’
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Phase

§ Phase

§ For fun:
• When is filter

steep & flat?
• Zoom to corner

frequency:
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CIRCUIT SIMPLIFICATIONS



Large and Small Values

§ To roughly understand behavior of circuits, only keep the 
dominant components:

§ Eliminate larger or the smaller part (depending on circuit!)
§ Error ~ ratio of components
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The same for Capacitors
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Resistors AND Capacitors

§ Behavior depends on frequency   ( |ZC| = 1/(2pn C) )
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