
Maximum Length Linear Feedback Shift Registers

(c) Peter Fischer

Institute for Computer Engineering (ZITI)
Heidelberg University, Germany

email address: peter.fischer@ziti.uni-heidelberg.de

February 23, 2018

Linear Feedback Shift Registers (LFSRs) are commonly used in digital circuit design
to generate long ‘random’ sequences of 1s and 0s with little hardware effort. In this
text I will show how the period of such a sequence obtained in a LFSR with exclusive-
or feedback can be calculated. In particular, the conditions to obtain the maximum
possible period of 2N − 1 for a register of N bit length will be clarified. I recapitulate
most of the requited mathematics, so that the text should be understandable with little
background.

z2z3 z1 y

an a3 a2 a1

znx

Figure 1: ‘Fibonacci’ type linear shift register with exclusive-or feedback and input sig-
nal. The circles with ’+’ signs denote exclusive-or gates. The ai ∈ [0, 1] are
parameters which affect the properties of the circuit.

1 Introduction

When a digital shift register of N bit length (fig. 1) is fed (at its input) with an exclusive-
or combination of the output signal (z1) and some of the internal bits (z2 . . . zN), se-
quences with very interesting properties can be generated. One particularly interesting
case is when the shift register cycles through all possible bit combinations, which gives
a sequence of length 2N−1 (one less than the total number of bit combinations, because
the state with all zeros is stable). Such sequences have very interesting properties so
that they are commonly used as noise generators, pseudo random number generators,
counters or binary test pattern generators. In order to obtain such a maximum length
sequence, the internal bits used in the exclusive-or must be at the correct positions.
In this text, I want to show how the taps can be found for a given register length N.

1

The intention is to really go through all the steps in the derivation and to make it un-
derstandable for a non mathematics expert. The derivation summarizes the approach
presented in [1] and in the standard book on shift registers from Solomon W. Golomb
[2]. The following text requires very little mathematical knowledge, just a bit of matrix
algebra and no fear of sum notations, indices and so on. Many expressions could be
written down in a much more general manner, but for simplicity, I restrict everything
to the simplest case.

The derivation will start with a formalization of what is going on in the shift register. We
will mix in an external input signal also (in addition to the exclusive-or of an arbitrary
combination of shift register bits) to be able to excite the initially empty shift register
at time t = 0. We will derive a general expression for the output state after an arbitrary
number of clocks. We will then introduce the well known z-transformation and use it
to extract periodicity information from the output sequence. At the end, we will find
criteria which must be met by the exclusive-or pattern to yield an output sequence of a
given period.

2 Calculation of the Output Signal

Shift Register Description. We consider a shift register with N bit length. The state
of the shift register flip flops is described by the N numbers zi(t) ∈ [0, 1] with i = 1 . . .N.
The integer time argument t = 0, 1, . . .∞ tells us how many clocks have elapsed. z1 is
the output of the shift register, while zN is the value of the first flip flop in the chain.
We denote the output also as y(t) := z1(t) (see fig. 1). For compact notation, we collect
the zi(t) in a (column) vector

~z(t) :=

z1(t)
z2(t)

...
zn(t)

 . (1)

We start with an empty shift register at time t = 0:

~z(0) = ~0. (2)

Feedback and Input Signal. Some internal signals of the register which we denote
as taps and an additional input signal x(t) are exor-ed together. This signal forms the
input to the first flip flop (see fig. 1). For a general treatment, we multiply every tap
zi by a coefficient ai ∈ [0, 1] (i = 1 . . .N) and sum up all products plus the external
input x. When we do the summing modulo 2 (i.e. 1+1 = 0, or ’+’=’-’), this sum is just
an exclusive or. (Mathematicians would say that we are working on GF(2), the Galois
Field with two elements.) Note that we obviously must always use the tap at the end of
the register (i.e. we must have a1 = 1), as we would not really use the N bits otherwise.

For our purpose, we can restrict the input signal x(t) to a single excitation at t = 0, i.e.

2

we have a delta pulse at the input:

x(t) = xδ(t) := δt,0 =

{
1 for t = 0
0 for t > 0

. (3)

General Output Signal. For the output y(t) and the state bits zi(t) we obviously
have

zi(t+ 1) = zi+1(t) for i = 1 . . .N− 1

zN(t+ 1) = x(t) +
N∑
i=1

ai · zi(t)

y(t) = z1(t).

The sum is calculated modulo 2, of course. These equations can be written very nicely
using a matrix notation as

~z(t+ 1) = A ~z(t) + Bx(t) (4)

y(t) = C ~z(t). (5)

A, B and C have dimensions of N×N, 1×N and N× 1, respectively, and are defined as

A :=

0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
a1 a2 a3 · · · aN

 ,B :=

0
0
...
0
1

 (6)

and
C := (1 0 0 . . . 0) . (7)

Output Signal after Time t. We now use (4) to calculate the shift register state for
successive time steps starting at t = 0 with the initial condition (2) and the properties
of the input signal (3):

~z(1) = A ~z(0) + Bx(0) = B

~z(2) = A ~z(1) + Bx(1) = AB

~z(3) = A ~z(2) + Bx(2) = A2B
...

~z(t) = At−1B. (8)

According to (5), the output signal y(t) is therefore

y(t) = CAt−1B. (9)

3

3 The z-Transformation

For the next steps, we will need the z-Transformation Z[f] of an infinite sequence of
discrete function values given by {f(t)} = f(0), f(1), It is defined as

F (s) = Z[f(t)] :=
∞∑
j=0

f(j) sj. (10)

F (. . .) depends on a variable which is often named z, we use s for compatibility with
other texts. F (s) has several interesting properties which we will derive next.

z-Transform of a Delta Pulse. The z-transform of a delta pulse at t = 0 is constant:

Z[xδ(t)] =
∞∑
j=0

δt,0 s
j = 1. (11)

z-Transform of a Time Shifted Signal. When the input sequence is shifted by one
time step, the z-transform is basically just divided by s (the extra term often vanishes):

Z[f(t+ 1)] =
∞∑
j=0

f(j + 1) sj =
∞∑
j=1

f(j) sj−1

=
Z[f(t)]− f(0)

s
. (12)

z-Transform of a Periodic Signal. Let us assume that the sequence f(t) has a
period of P starting at time t = τ , i.e. that the sequence looks like this:

{f(t)}= r0, r1, . . . , rτ−1, (‘preamble’, τ values)
rτ , rτ+1, . . . , rτ+P−1, (first period, P values)
rτ , rτ+1, . . . (next periods. . .)

(13)

The z-transform of this periodic signal is given by

Z[f(t)] = r0 + r1s+ . . .+ rτ−1s
τ−1 +

rτs
τ + . . .+ rτ+P−1s

τ+P−1 +

rτs
τ+P + . . .+ rτ+P−1s

τ+2P−1 + . . .

=
τ−1∑
i=0

ris
i + sτ (1 + sP + . . .)× (rτ + . . .+ rτ+P−1s

P−1)

=
τ−1∑
i=0

ris
i +

sτ

1 + sP

P−1∑
i=0

rτ+is
i. (14)

We have simplified the expression by replacing the infinite geometric sum (1 + sP + . . .)
by (1 − sP)−1 and by switching to a ’+’ sign in the denominator, because we work
modulus 2.

4

4 z-Transform of the Output Sequence

We can now use the z-Transform to study the periodicity of the output signal y(t) as
given by (9). We apply the z-Transform to (4) using the delta pulse input (3):

Z[~z(t+ 1)] = AZ[~z(t)] + BZ[xδ(t)]

s−1Z[~z(t)] = AZ[~z(t)] + B

(I− sA)Z[~z(t)] = sB

Z[~z(t)] = s (I− sA)−1B (15)

In the first step, we have used (11) and (12) and we have introduced the N × N unit
Matrix I. From (5) we then get

Z[y(t)] = CZ[~z(t)]

= sC (I− sA)−1B (16)

This result could have been directly obtained, in principle, by transforming (9). It looks
a bit complicated, but because B and C both contain just one non-zero element (see
(6) and (7)), we in fact only need the upper right element of the inverse matrix in the
middle.
What follows now is a bit tedious, and can be skipped up to the result (18). A general
expression for the inverse of a matrix M with elements Mi,j is (M−1)i,j = |M†

j,i|/|M|
where | . . . | is the determinant and |M†

i,j| is the adjoint (N− 1)× (N− 1) matrix. It is
obtained by crossing out the i-th column and the j-th row in M, multiplied by an extra
sign factor (−1)i+j. The matrix M := I− sA in the middle looks explicitly like this:

M =

 1 −s 0 · · · 0
0 1 −s · · · 0
...

. . .
...

0 0 0 · · · −s
−a1s −a2s −a3s · · · 1− aNs

 . (17)

For the calculation of the required (M−1)N,1, we need |M†
1,N| which we obtain by crossing

out the leftmost column and the lowermost row in M. The remaining matrix has (N−1)
times −s on the diagonal and only zeros in the upper right part, so that its determinant
is just (−s)N−1. Together with the (−1)N+1 sign factor, this gives just sN−1. One method
to calculate the determinant of M is as follows: go through all elements Mi,j in a fixed

row j and sum up (−1)i+j ·Mi,j · |M†
i,j|. Applying this to the bottom row, we get a sign

factor (−1)N+i multiplied by −ais and the determinant of the matrix found by crossing
out the lowermost row and the i-th column, which turns out to be (−s)N−1. Each of
these terms gives a contribution of −aisN−i+1, except from the last column, where we
have just (1− aNs). All together, we have

Z[y(t)] =
sN

1 + aNs+ aN−1s2 + . . .+ a1sN

=
sN

g(s)
. (18)

5

g(s) is the so-called characteristic function of the shift register. It only depends on the
position of the taps.

Requiring a Period in y(t). We are now ready to compare the z-Transform of a
particular output sequence (18) to the general expression (14) for a certain periodicity:
As we start with zeros in the shift register at time t = 0, we will see zeros at the output
during N− 1 clock cycles, i.e. we have ri = 0 for i = 0 . . .N− 1. The first term in (14)
therefore drops out.
At t = N, the injected one appears at the output, i.e. we have rN = 1. Note that any
periodic sequence must start exactly at t = N: it is not possible that there is a further
‘preamble’ after t = N because every state has a well defined predecessor state (which
we can calculate) for this type of register! We want the following sequence to have a
period P and denote the output signals after rN by αi, i.e. rN+i = αi. Equation (14) of
such a periodic sequence y(t) take the following form (with τ = N):

Z[y(t)] =
sN

1 + sP

P−1∑
i=0

αis
i = sN

h(s)

1 + sP
. (19)

h(s) is a polynominal created from the sequence of 1s and 0s with period P . Comparing
(18) and (19), which both describe the same output sequence, gives us the condition
which must be fulfilled in order for the sequence to have a period P :

h(s) g(s) = 1 + sP . (20)

As a reminder, g(s) is the characteristic polynominal constructed as defined in (18)
from the topology of the LFSR. h(s) is a polynominal reflecting the output sequence.
All calculations are on the Galois field GF(2), i.e. modulo 2.

5 Conclusions

From (20) We conclude the following:

1. The shift register can only have a period P if g(s) = 1 + aNs+ aN−1s
2 + . . .+ a1s

N

divides 1 + sP .

2. A register of period P1, has, of course, also periods k · P1 for all possible k. To
make sure that the period P is the smallest period, g(s) may not divide any 1 + sp

with p < P . When we want to check that, we do not have to verify all possible p,
just the prime factors of P .

6

6 Examples

6.1 N=4, Maximum Length

Figure 2: LFSR for N=4 with tap at last position.

The register with N = 4 flipflops in fig. 2 has one ’tap’ at the last position, i.e. a
characteristic polynominal g(s) = 1 + s3 + s4.
This g(s) divides 1 + s15 = (1 + s) (1+s+s2) (1+s+s4) (1+s3+s4) (1+s+s2+s3+s4),
but it does not divide 1 + s5 = (1 + s) (1 + s+ s2 + s3 + s4), the polynominal for a
possible smaller period of 5, nor 1 + s3 = (1 + s) (1 + s+ s2). The period is therefore
15. Note that the output sequence can be directly obtained from

h(s) =
1 + s15

1 + s3 + s4
= 1 + s3 + s4 + s6 + s8 + s9 + s10 + s11

as 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1.

6.2 N=4, Shorter Period

Figure 3: LFSR for N=4 with tap at second last position.

The shift register in fig. 3 uses the second last tap so that we now have g(s) = 1+s2+s4.
From the factorization g(s) = 1 + s2 + s4 = (1 + x+ x2)

2
we can directly see that this

g(s) does not divide 1 + s15 (see the factorization above). If we try to divide 1 + sk by
g(s) for smaller k = 1 . . . 15, we find the reminders

1. 1 + x

2. 1 + x2

3. 1 + x3

4. x2

5. 1 + x3 + x

7

6. 0

7. 1 + x

8. 1 + x2

9. 1 + x3

10. x2

11. 1 + x+ x3

12. 0

13. 1 + x

14. 1 + x2

15. 1 + x3

The first division works for a period k = 6. Looking at the corresponding polynominal
1 + s6 = (1 + x)2 (1 + x+ x2)

2
confirms, that this contains the prime polynominals of

g(s).
Note that the next division which works is at k = 12, twice the period.

7 N=6, Period is a Fraction of 26 − 1

Figure 4: LFSR for N=6.

The longer shift register in fig. 4 has several taps so that g(s) = 1+s2+s4+s5+s6. This
characteristic polynominal divides 1 + s63, so that we have a period of 63. It turns out,
however, that this is not the fundamental (lowest) period, by noting that also 1 + s21 is
divided by g(s). There is no lower exponent which works, so that the period of fig. 4 is
21.

8 Fibonacci and Galois Type Registers

So far, we have treated the type of shift registers shown in fig. 1, where the output, the
taps and, possibly, an input are all XOR-ed together and fed back to the input. This
topology is often called a ‘Fibonacci’ type shift register. In a practical application, it has
the drawback that the many daisy chained XOR gates can introduce quite some delay
so that the maximum clocking frequency of the register is limited. Another possible
topology, the ‘Galois’ type shown in fig. 5 avoids this drawback because there is at most

8

one XOR gate in front of every flipflop.

z2z3 z1 y

b2 b1

znx

bn-1bn

Figure 5: ‘Galois’ type linear shift register

Can we apply what we have learned to this type of register? Let’s write down again the
recursion which allows us to calculate ~z(t+ 1) from ~z(t):

zi(t+ 1) = zi+1(t) + bi · z1(t) for i = 1 . . .N− 1

zN(t+ 1) = x(t) + bN · z1(t)
y(t) = z1(t).

In Matrix notation, this is

~z(t+ 1) =

b1 1 0 · · · 0
b2 0 1 · · · 0
...

. . .
...

bN−1 0 0 · · · 1
bN 0 0 · · · 0

 ~z(t) +

0
0
...
0
1

x(t)

This looks very similar to (6), just that now, the coefficients with small indices are close
to the diagonal. If we do the same as before with this new matrix, it turn out that the
characteristic polynomial is the same as before, if we use b1 for aN and so on! The period
of the Galois Register is therefore the same as for the Fibonacci register, if we reverse
the tap order.

References

[1] M. Gössel, Angewandte Automatentheorie I und II, Wissenschaftliche Taschen-
bücher Band 116 und 117, Akademie Verlag, Berlin, 1972, ISBN 3528061170

[2] W. S. Golomb, Shift Register Sequences, Aegean Park Press, 1982, ISBN
0894120484

[3] Efficient Shift Registers, LFSR Counters and Long Pseudo-Random Sequence
Generators, Xilinx Application Note XAPP 052, July 7,1996 (Version 1.1),
http://www.xilinx.com/bvdocs/appnotes/xapp052.pdf

9

