
VLSI Design:

SKILL

Prof. Dr. P. Fischer

 Lehrstuhl für Schaltungstechnik und Simulation
Technische Informatik der Uni Heidelberg

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 1

What is Skill and what can it do ?

§ SKILL is the shell / control language of cadence
§  It is used for

• Configuration of the environment
•  Definition of library path
•  …

• Configuration of tools
•  Definition of ShortCuts
•  Definitions of new commands / menu entries
•  …

§ Skill allows, for instance, direct access to objects in an
open layout / schematic view for
•  Scripted creation of shapes / labels / …
•  Automated creation of layouts, symbols
•  Extraction of pad positions, …
• Definition of parameterized cells (pcells)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 2

How does SKILL look like?

§ SKILL – in its ‘natural’ form – is very similar to LISP (‘LISt
Processing’)
• Commands have the form(cmd arg1 arg2 ...)
• Data is mostly stored as lists

§ Operators are possible as well, i.e.
• 3 + 5 (equivalent to (plus 3 5))
• x = 6

§ A ‘C-like’ form is possible as well: cmd(args..)
• Note that the (must DIRECTLY follow cmd, i.e. with NO blank!

§ SKILL is caseSENsitTive!
§ Comments are started by ; or enclosed in /*...*/ (as C)

§ SKILL is – normally – interpreted
•  it can also be compiled (→ *.cxt) end encrypted

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 3

Where to find Help & Documentation ?

§ At http://en.wikipedia.org/wiki/Cadence_SKILL

§ On our Linux machines using a Web browser at
/opt/eda/IC616/doc/sk...
There you find for instance

§ Best save some links in your browser!

VLSI Design - Skill

Path Purpose

sklangref/sklangrefTOC.html Structure, Basic Commands

sklanguser/sklanguserTOC.html Data structures

skdevref/skdevrefTOC.html Routines

skdfref/skdfrefTOC.html Data objects

sklayoutref/sklayoutrefTOC.html Layout specific stuff

© P. Fischer, ZITI, Uni Heidelberg Page 4

More Help

§ There is quite a lot of help in the internet
§  If you look around, most questions are answered at the end

in a very patient and competent way by

 Andrew Beckett

from Cadence.

§ Thank you Andrew!!!!!

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 5

§ You can type commands directly in the Main CIW
(Command Interpreter Window):

§ You get back old entries with the arrow up key
§ You can select output with the mouse and paste it back to

the entry line with the middle mouse button

§ There seems to be no easy way to clear the CIW

How to execute SKILL commands

VLSI Design - Skill

Enter

© P. Fischer, ZITI, Uni Heidelberg Page 7

Automatic Execution of SKILL

§ You can put code in a file (extension *.il) and load the file
with (load “filename.il”)

§ Code in the file .cdsinit (in the directory from where you
start cadence) is executed at startup of cadence

§  In this file, you can
• Define bindkeys (see exercise 4)
• Define your own commands
• Call other skill files

VLSI Design - Skill

Enter
t: no error

(print “Hello”)

In file “Skilltest.il”:

© P. Fischer, ZITI, Uni Heidelberg Page 8

BASIC OBJECTS: ATOMS & LISTS

Objects: Atoms and Lists

§ An atom is a simple object:
•  numbers (integers, floats)
•  The boolean values t (true) or nil (false)
•  pointers (see later)
•  The function atom checks if the argument is indeed atomar:
(atom 5)→ t

§ A list is a sequence of elements
•  Lists are created by: (list obj obj ...) → a list
•  Equivalent: list(obj obj ...)
•  Short hand notation: ‘(obj obj ...)

(objects are not evaluated, works mostly only in top level!)
•  An empty list is nil (nil is an atom and a list...)

•  They are displayed as (obj obj ...)
•  Each element can be an atom or another list: ‘((list 1 2) 3)
•  (listp obj) checks if an object is a list

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 10

Examples for lists

§ (list 1 2 3)

§ (list (list 1 2) (list 3 4))

VLSI Design - Skill

1

2

3

1

2
3

4

© P. Fischer, ZITI, Uni Heidelberg Page 11

Accessing Parts of lists

§ The first element of a list x is (car x), the rest is (cdr x):
• (car '(1 2 3)) → 1
• (cdr '(1 2 3)) → (2 3)

§ Note: cdr always returns a list or nil:
• (car '(1 2)) → 1
• (cdr '(1 2)) → (2)
• (cdr '(1)) → nil

§ Extensions for nested lists are caar, cadr, cdar, cddr,...
(starting evaluation ‘at the back’):
With x = '((1 2) (3 4) 5): (see also next page)
• (car x) → '(1 2)
• (cdr x) → '(3 4)
• (caar x) → 1
• (cdar x) → (2)
• (cadar x) → 2
• (caadr x) → 3 (note two ‘a’ !)

VLSI Design - Skill

1

2
3 nil

© P. Fischer, ZITI, Uni Heidelberg Page 12

Accessing Parts of a List

§ (list (list 1 2) (list 3 4) 5)

§ Note: (cdar x) is (cdr (car x))

VLSI Design - Skill

1

2
3

4 5

car
cdr

cddr

caar (cdar x)

cadar
cadr

x

© P. Fischer, ZITI, Uni Heidelberg Page 13

Most important: car and cadr (not cdr!)

§ (setq x (list 1 2))
§ (car x) and (cadr x) access the first and second

element of a list:

VLSI Design - Skill

1

2

car cdr

cadr

x

© P. Fischer, ZITI, Uni Heidelberg Page 14

More List Commands

§ Get the length of a list (or array / table / ...) (top level!):
• (length object)
• (length '(a b c d)) → 4

§ Pick the n-th element (first element has index 0):
• (nth index list)
• (nth 2 '(a b c d)) → c

§ Add an element to (the front of) a list:
• (cons element list)
• (cons 5 '(a b c d)) → (5 a b c d)
• Note: list is not changed! To change it, re-assign it:
• aa = (cons 5 aa)
•  You can also append (two lists!) at the end, but this is slower!

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 15

More List Commands

§ Check if an object is a list:
• (listp object) → t or nil

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 16

Functions

§ Several mathematical functions work on arbitrary number of
arguments:

§ (plus 4 5 6)
§ (times 5 6 7)

§ (difference 4 3)

§ (quotient 4 3) → integer result, if arguments are int!!!,
 float result if arguments are float

§ (xquotient 4 3) → integer arguments only!

§ (minus 5) → -5

§ (float 3) → 3.0 ; convert integer to float

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 17

§ A point is a list of two (float) values
§ There is a short hand notation to enter such a list
• 3.1:4.2 → (3.1 4.2)

§ To extract the coordinates, one can use
• (xCoord p) equivalent to (car p)
• (yCoord p) equivalent to (cadr p) (not cdr !!!)
(note capital ‘C’!)

§ A rectangle is a list of two points
• list(3:4.2 10:12.1)→ ((3 4.2) (10 12.1))

§ Note: In the database (see later) the first point is always
bottom left, i.e. (xCoord (car p)) < ((xCoord (cadr p))

Points and Rectangles

VLSI Design - Skill

x

y

p

© P. Fischer, ZITI, Uni Heidelberg Page 18

Variables

§ Variables do not need to be declared, they are just used
§ Assignment can be done with
• var = expression
or
• (setq var expression)

§  Note that expression are evaluated:

VLSI Design - Skill

c is 3

© P. Fischer, ZITI, Uni Heidelberg Page 19

(Difference between (list …) and '(...)

§ (list …) evaluates the aruments, '(..) does not:

(setq x 1.0)

(list x 3.0)
 → (1.0 3.0)

'(x 3.0)
 → (x 3.0)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 20

CONTROL STRUCTURES

Conditional Execution - if

§ Readable version (‘C-like syntax’):
• if(condition then expression1 else expression2)

§ More compact ‘lisp’ version:
• (if condition expression1 expression2)

§ Examples:
• (if t 4 6) → 4
• (if (greaterp 6 7) 4 6) → 6
• (if 3+4>3*4 then print(“yes”) else (print “no”))

 → „no“

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 22

Logical Expressions

§ Boolean values can be true (t) or false (nil)

§ Normal operators work: >, <=, ==, ..
•  The function equivalents have mostly a ‘p’ at the end:
• (greaterp 5 4) (leqp 6 7)

§ Several functions return a Boolean value:
• (oddp 7) → t
• (plusp -3) → nil
• (zerop 0) → t
• (floatp 3) → nil ; check data type

§ WATCH OUT: There are several versions of eq, equal,…
which check content or addresses – see documentation:
• p1 = ‘(1 2) p2 = ‘(1 2)
• (equal p1 p2) → t // same values
• (eq p1 p2) → nil // different objects!

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 23

Loops

§ (for var initial_value final_value expressions)
(loop variable is always incremented by 1!)

§ (while condition expressions)

§ Examples:
• (for i 1 9 (print i)) → 123456789

• (setq i 1)
(while i<100 i=2*i (printf "%d " i))

 → 2 4 8 16 32 64 128

§ Also:
• (when …)
• (unless …)
• (case …)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 24

Very Useful: foreach

§ All elements of a list can be processed with ‘foreach’:
(foreach name list expression)
•  Variable name is assigned an element of list and expression

is executed. This is repeated for all elements of list.

§ Example:
• (foreach x '(1 2 3 5) (println x*x))

→

1
4
9
25

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 25

PROCEDURES

Procedures

§ A procedure can be declared with

 (procedure
 (name arg1 arg2 …)
 commands
 …
 result of last command is return value
)

§ Example:
• (procedure (square x) (times x x)) // LISP syntax
• (square 4) → 16

§ Alternative syntax:
• procedure(square(x) x*x) // C-like syntax
• square(4) → 16

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 27

(Local Variables)

§ When defining procedures, it is recommended to declare
variables locally. This can be done using a let – block:

§ (let (list of local variables) commands)
§ The local variables in the list can be

• Declared by just naming them
•  Initialized using (name value)

§ Example:
 (procedure
 (Test);function has no args
 (let
 (z (x 3) (y 4));local variables
 z = x + y
) ; end of let
) ; end of procedure

§ Note: Only one variable with default:
(let ((x 1)) …)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 28

set global x

After function call,
global x is

unchanged !

(Functions with Defaults and Named Parameters)

§ Function arguments can be assigned a default value and
can be called by name using the @key keyword:

(procedure
 (fname @key (param1 default) …)
 definition
)
§ The procedure can the be called with named parameters:
(fname ?param1 value ?param2 value…)

§ Example:
(procedure
 (MyShow @key
 (value 3.0)
 (text "The value is")
)
 (printf "%s %f\n" text value)
)
VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 29

THE CADENCE DATABASE

Objects in the DataBase

§ All objects used in cell views (wires, pins, labels, shapes,
contacts,..) are stored in a data base.

§ Access to objects is via their unique data base object
identifier, or ID

§ Objects have properties (or ‘attributes’) / members
§ The access operator to the properties is ~>
§ A list of all attributes can be shown with ID~>?
§ Attributes & their values are listed with ID~>??

§ Usefull: ‘~>’ threads through lists, i.e. list~>.. is possible!

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 31

Getting access to an object (get the ID)

§ With an open cell view (layout or schematic), the command
(geGetEditCellView) gets the ID

VLSI Design - Skill

These are all the
properties of the

cell view

commands of
graphic editor
(layout) mostly
start with ge...

© P. Fischer, ZITI, Uni Heidelberg Page 32

Looking at cell view properties

§ Once we have a view ID, we can access the properties:

§ The properties
instances,vias,shapes,layerPurposePairs (= lpp),..
are again lists of object IDs

§ They can be studied further:

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 33

Modifying Objects

§ The properties can be modified and affect the open view
immediately:

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 34

Modifying Objects - 2

§ The layerPurposePairs (lpp) defines the object layer
§  It can be modified...

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 35

Creating New Objects

§ There are many commands to create objects, see skdfref
§ For instance, create a new rectangle with
(dbCreateRect CellViewID lpp list(x:y x:y)):

VLSI Design - Skill

x = ID of open
cell view

© P. Fischer, ZITI, Uni Heidelberg Page 36

Common Errors

§  It often happens that you forget some closing ‘)’. The input
window the ‘hangs’

§ You can close all pending open ‘)’ with ‘]’

§ Common error:
• No blank between a name and ‘(‘ in 'lisp' mode:
(setq a(plus a 3))

•  This gives an error because a(is interpreted as function!!!

§ Tricky error:
• (setq n 3) (setq x n/2) → x =1 !!! (integer division!)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 37

Learning About Command Names

§ When writing own command, the procedure names used by
Cadence are sometimes difficult to find, despite the help
files.

§ Cadence tells you in the CIW which procedures are used
by the build-in commands if you enable this under

§ CIW->Options->Log Filter->\a

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 38

SOME USEFUL APPLICATIONS OF SKILL

Defining a Bindkey

§ A bindkey (for layout editor) can be defined using the call
(hiSetBindKey "Layout" "key" "(function …params…)")
•  first parameter is the tool ("Layout", "Schematic",..)
•  second is key ("1", "Ctrl v",…)
•  third is the function that will be called

§ For instance, you can set the snap grid with this procedure:
(procedure (setSnapGrid snap)
 window = (hiGetCurrentWindow)
 window~>xSnapSpacing = snap
 window~>ySnapSpacing = snap
 (printf "Setting Snap Spacing to %.3f\n" snap)
)

§  Install this with
(hiSetBindKey "Layout" "1" "(setSnapGrid 0.01)")

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 40

Managing Bind Keys

§ You can see all assignments to bind keys under
CIW → Options → Bindkeys

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 41

Adding a User Menu and One Menu Item
(procedure (PrintNumberOfInstances) ; the procedure we install
 (setq inst (deGetEditCellView)~>instances) ; (better use 'let'!)
 (printf "Found %d instances:\n" (length inst))
 (foreach s inst (printf "%L\n" s->cellName))
)
MyMenuShowObjects = (hiCreateMenuItem ; define an menu item
 ?name 'PrintNumberOfInstances ; for later reference
 ?itemText "Show # of Instances & types" ; Text for menu item
 ?statusTip "Show # inst & type" ; shown in status bar
 ?callback "PrintNumberOfInstances"
)
hiCreatePulldownMenu(; define a menu
 'MyMenu ; for later reference
 "MyFirstMenu" ; text for menu (in bar)
 list(MyMenuShowObjects) ; all menu items in the menu
)
(procedure (InstallMenu args) ; installation routine which
 (hiInsertBannerMenu ; adds the menu to the 'Banner' bar
 args->window ; the window
 MyMenu ; name of menu to add
 (length (hiGetBannerMenus args->window)) ; menu position (0=left)
))
(deRegUserTriggers "maskLayout" ; tell cadence to call (InstallMenu)
 nil nil 'InstallMenu) ; whenever a layout is opened

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 42

Loading Things Automatically

§ SKILL code can be executed automatically:

§ At startup of Cadence, the file .cdsinit is executed.
In this file, you can for instance define shortcuts

§ When the layout/schematic editor is started, the files
layEdit.menus/schematic.menus in directory menus (in
the working dir) are executed
•  If you want to create your own menu, put them here.

§ You can use some predefined menus (from SuS):
• Create subdirectory menus (with command mkdir menus)
•  In this directory, create symbolic links with
ln -s /shares/tools/SKILL/layEdit.menus layEdit.menus
and
ln -s /shares/tools/SKILL/schematic.menus schematic.menus

•  You need to restart Cadence…
VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 43

Defining a Parameterized Cell

§ You can create a fully new cell with Skill (layout, symbol,…)
§ This cell can contain parameters which change its content
§ A function defines how the cell looks in dependence of the

parameter
§ Example: A Pad with

•  an opening in layer "PAD" specified by two parameters (x,y)
• metal6 around with a 1um extension
• metal5 of similar size, but only if a (parameter) flag is set

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 44

PCELL Definition (here: for Layout)

(pcDefinePCell
 (list (ddGetObj "CCS2013") "TestPad" "layout") ; the cell to create
 (
 (Width float 10) ; parameters with type and default
 (Height float 6) ;
 (PutM5 boolean 'nil) ; a flag
)
 (let ; The code. here we use 'let' for local variables
 (
 (lppM5 '("ME5" "drawing")) ; define a lpp for later usage
 (Overlap 1.0) ; between metals and PAD
 MetalShape ; used internally
)
 ; content starts here
 (setq MetalShape ; define metal shape for later
 (list -Overlap:-Overlap Width+Overlap:Height+Overlap)
)
 (dbCreateRect pcCellView '("PAD" "drawing") (list 0:0 Width:Height))
 (dbCreateRect pcCellView '("ME6" "drawing") MetalShape)
 (if PutM5 (dbCreateRect pcCellView lppM5 MetalShape))
) ; end let
 (return t)

)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 45

