
VLSI Design:

SKILL

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation
Technische Informatik der Uni Heidelberg

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 1

What is Skill and what can it do ?

§ SKILL is the shell / control language of cadence
§ It is used for

• Configuration of the environment
• Definition of library path
• …

• Configuration of tools
• Definition of ShortCuts
• Definitions of new commands / menu entries
• …

§ Skill allows, for instance, direct access to objects in a layout
/ schematic view for
• Scripted creation of shapes / labels / …
• Automated creation of cells, layouts, symbols
• Extraction of pad positions, …
• Definition of parameterized cells (pcells)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 2

How does SKILL look like?

§ SKILL – in its ‘natural’ form – is very similar to LISP (‘LISt
Processing’)
• Commands have the form(cmd arg1 arg2 ...)

• Data is mostly stored as lists

§ Operators are possible as well, i.e.
•3 + 5 (equivalent to (plus 3 5))
•x = 6 (equivalent to (setq x 6))

§ A ‘C-like’ form is possible as well: cmd(args..)
• Note that the (must DIRECTLY follow cmd, i.e. with NO blank!

§ SKILL is caseSENsitTive!
§ Comments are started by ; or enclosed in /*...*/ (as C)

§ SKILL is – normally – interpreted
• it can also be compiled (→ *.cxt) end encrypted

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 3

Where to find Help & Documentation ?

§ At http://en.wikipedia.org/wiki/Cadence_SKILL

§ On our Linux machines using a Web browser at
/opt/eda/IC618/doc/sk...
There you find for instance

§ Best save some links in your browser!

VLSI Design - Skill

Path Purpose

sklangref/sklangrefTOC.html Structure, Basic Commands

sklanguser/sklanguserTOC.html Data structures

skdevref/skdevrefTOC.html Routines

skdfref/skdfrefTOC.html Data objects

sklayoutref/sklayoutrefTOC.html Layout specific stuff

© P. Fischer, ZITI, Uni Heidelberg Page 4

http://en.wikipedia.org/wiki/Cadence_SKILL
http://en.wikipedia.org/wiki/Cadence_SKILL

More Help

§ You can also use the general cadence help system
(/opt/eda/IC618/bin/cdnshelp or via ‚Help‘ buttons)

§ There is quite a lot of help in the internet
§ If you look around, most questions are answered at the end

in a very patient and competent way by

Andrew Beckett

from Cadence.

§ Thank you Andrew !!!!!

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 5

More Help

§ You can start an interactive tool from the
CIW→Tools→SKILL IDE…

§ It contains for instance a linter, step by step processing,
breakpoints,…

§ You can search for available SKILL functions with the
CIW →Tools→SKILL API Finder

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 6

§ You can type commands directly in the Main CIW
(Command Interpreter Window):

§ You get back old entries with the arrow up key
§ You can select output with the mouse and paste it back to

the entry line with the middle mouse button

§ There seems to be no easy way to clear the CIW

How to execute SKILL commands

VLSI Design - Skill

Enter

© P. Fischer, ZITI, Uni Heidelberg Page 7

Automatic Execution of SKILL

§ You can put code in a file (extension *.il) and load the file
with (load “filename.il”)

§ Code in the file .cdsinit (in the directory from where you
start cadence) is executed at startup of cadence

§ In this file, you can
• Define bindkeys (see exercise 4)
• Define your own commands
• Call other skill files

VLSI Design - Skill

Enter
t: no error

(print “Hello”)

In file “Skilltest.il”:

© P. Fischer, ZITI, Uni Heidelberg Page 8

BASIC OBJECTS: ATOMS & LISTS

Objects: Atoms and Lists

§ An atom is a simple object:
• numbers (integers, floats)
• The boolean values t (true) or nil (false)
• pointers (see later)
• The function atom checks if the argument is indeed an atom:
(atom 5)→ t

§ A list is a sequence of elements
• Lists are created by: (list obj obj ...) → a list
• Equivalent: list(obj obj ...)

• Short hand notation: ‘(obj obj ...)
(objects are not evaluated, works mostly only in top level!)

• An empty list is nil (nil is an atom and a list...)

• Lists are displayed as (obj obj ...)

• Each element can be an atom or another list: ‘((list 1 2) 3)

• (listp obj) checks if an object is a list

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 10

Examples for lists

§ (list 1 2 3)

§ (list (list 1 2) (list 3 4))

VLSI Design - Skill

1

2

3

1

2
3

4

© P. Fischer, ZITI, Uni Heidelberg Page 11

Accessing Parts of lists

§ The first element of a list x is (car x), the rest is (cdr x):
•(car '(1 2 3)) → 1
•(cdr '(1 2 3)) → (2 3)

§ Note: cdr always returns a list or nil:
•(car '(1 2)) → 1
•(cdr '(1 2)) → (2)
•(cdr '(1)) → nil

§ Extensions for nested lists are caar, cadr, cdar, cddr,...
(starting evaluation ‘at the back’):
With x = '((1 2) (3 4) 5): (see also next page)
•(car x) → '(1 2)
•(cdr x) → '(3 4)
•(caar x) → 1
•(cdar x) → (2)
•(cadar x) → 2
•(caadr x) → 3 (note two ‘a’ !)

VLSI Design - Skill

1

2
3 nil

© P. Fischer, ZITI, Uni Heidelberg Page 12

Accessing Parts of a List

§ (list (list 1 2) (list 3 4) 5)

§ Note: (cadr x) is (car (cdr x))

VLSI Design - Skill

1

2
3

4 5

car
cdr

cddr

caar cdar

cadar
cadr

x

© P. Fischer, ZITI, Uni Heidelberg Page 13

Most important: car and cadr (not cdr!)

§ (setq x (list 1 2))
§ (car x) and (cadr x) access the first and second

element of a list:

VLSI Design - Skill

1

2

car cdr

cadr

x

© P. Fischer, ZITI, Uni Heidelberg Page 14

More List Commands

§ Get the length of a list (or array / table / ...) (top level!):
•(length object)

•(length '(a b c d)) → 4

§ Pick the n-th element (first element has index 0):
•(nth index list)

•(nth 2 '(a b c d)) → c

§ Add an element to (the front of) a list:
•(cons element list)

•(cons 5 '(a b c d)) → (5 a b c d)

• Note: list is not changed! To change it, re-assign it:
•aa = (cons 5 aa)
• You can also append (two lists!) at the end, but this is slower!

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 15

More List Commands

§ Check whether an object is in a list:
§ (member element list) → nil or rest-list
§ (memq …)

§ Difference: member uses ‚equal‘, memq uses ‚eq‘

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 16

Functions

§ Several mathematical functions work on arbitrary number of
arguments:

§ (plus 4 5 6)
§ (times 5 6 7)

§ (difference 4 3)

§ (quotient 4 3) → integer result, if arguments are int!!!,
float result if arguments are float

§ (xquotient 4 3) → integer arguments only!

§ (minus 5) → -5

§ (float 3) → 3.0 ; convert integer to float

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 17

§ A point is a list of two (float) values
§ There is a short hand notation to enter such a list
•3.1:4.2 → (3.1 4.2)

§ To extract the coordinates, one can use
•(xCoord p) equivalent to (car p)
•(yCoord p) equivalent to (cadr p) (not cdr !!!)
(note capital ‘C’!)

§ A rectangle is a list of two points
•list(3:4.2 10:12.1)→ ((3 4.2) (10 12.1))

§ Note: In the database (see later) the first point is always
bottom left, i.e. (xCoord (car p)) < ((xCoord (cadr p))

Points and Rectangles

VLSI Design - Skill

x

y

p

© P. Fischer, ZITI, Uni Heidelberg Page 18

Variables

§ Variables do not need to be declared, they are just used
§ Assignment can be done with
•var = expression

or
•(setq var expression)

§ Note that expression are evaluated:

VLSI Design - Skill

c is 3

© P. Fischer, ZITI, Uni Heidelberg Page 19

(Difference between (list …) and '(...)

§ (list …) evaluates the arguments, '(..) does not:

(setq x 1.0)
(list x 3.0) → (1.0 3.0)
'(x 3.0) → (x 3.0)

§ Watch out:
list(3:4.2 10:12.1)→ ((3 4.2) (10 12.1))
but
'(3:4.2 10:12.1)→ ((3:4.2) (10:12.1))

§ Better use (list …)! This is safer!

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 20

CONTROL STRUCTURES

Conditional Execution - if

§ ‘Lisp’ version:
•(if condition exTrue exFalse)

§ More ‘true’ or ‘false’ statements can be grouped by { … }

§ Better readable versions:
•(if condition then exT1 exT2 ... else exF1 exF2 …)

•if(condition then exT1 exT2 ... else exF1 exF2 …) //C-Style

§ Examples:
•(if t 4 6) → 4
•(if (greaterp 6 7) 4 6) → 6
•(if 3+4>3*4 then print(“yes”) else (print “no”))

→ „no“

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 22

Logical Expressions

§ Boolean values can be true (t) or false (nil)
§ Normal operators work: >, <=, ==, ..

• The function equivalents have mostly a ‘p’ at the end:
•(greaterp 5 4) (leqp 6 7)

§ Several functions return a Boolean value:
•(oddp 7) → t

•(plusp -3) → nil

•(zerop 0) → t

•(floatp 3) → nil ; check data type

§ WATCH OUT: There are several versions of eq, equal,…
which check content or addresses – see documentation:
•p1 = ‘(1 2) p2 = ‘(1 2)
•(equal p1 p2) → t // same values
•(eq p1 p2) → nil // different objects!

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 23

More Conditionals

§ Execute several expressions if a condition is true:
•(when condition ex1 ex2 …)

§ Same if condition is false
•(unless condition ex1 ex2 …)

§ Examine several cases:
•(cond

(condition1 expr. expr. …)
(condition2 expr. expr. …)
...

)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 24

Loops

§ (for var initial_value final_value expressions)
(loop variable is always incremented by 1!)

§ (while condition expressions)

§ Examples:
•(for i 1 9 (print i)) → 123456789

•(setq i 1)
(while i<100 i=2*i (printf "%d " i))

→ 2 4 8 16 32 64 128

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 25

Very Useful: foreach

§ All elements of a list can be processed with ‘foreach’:
(foreach name list expression)
• Variable name is assigned an element of list and expression

is executed. This is repeated for all elements of list.

§ Example:
•(foreach x '(1 2 3 5) (println x*x))

→

1
4
9
25

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 26

PROCEDURES

Procedures

§ A procedure can be declared with

(procedure
(name arg1 arg2 …)
commands
…
result of last command is return value

)

§ Example:
•(procedure (square x) (times x x)) // LISP syntax
•(square 4) → 16

§ Alternative syntax:
•procedure(square(x) x*x) // C-like

syntax
•square(4) → 16

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 28

(Local Variables)

§ When defining procedures, it is recommended to declare
variables locally. This can be done using a let – block:

§ (let (list of local variables) commands)
§ The local variables in the list can be

• Declared by just naming them
• Initialized using (name value)

§ Example:
(procedure

(Test);function has no args
(let
(z (x 3) (y 4));local variables
z = x + y

) ; end of let
) ; end of procedure

§ Note: Only one variable with default:
(let ((x 1)) …)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 29

set global x

After function call,
global x is

unchanged !

(Functions with Defaults and Named Parameters)

§ Function arguments can be assigned a default value and
can be called by name using the @key keyword:

(procedure
(fname @key (param1 default) …)
definition …

)

§ The procedure can then be called with named parameters:
(fname ?param1 value ?param2 value…)

§ Example:
(procedure
(MyShow @key
(value 3.0)
(text "The result is")

)
(printf "%s %f\n" text value)

)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 30

(Formatted & File IO)

§ Mostly like in C:
(print "Hello")
(println "Hello")
(printf "1+2 is %d\n" (add 1 2))

§ Format syntax: %[-][width][.precision] code
• - : Left aligned
• code: d: int, f: float, s: string, c:char, P:point, B: bounding box

§ Writing to file:
•fp = (outfile "path" [opt]) opt = “a“:append, „w“:write
•(fprintf fp "%f\n" 3.141)

•(close fp) // must close, otherwise empty file !
§ Reading from file
•fp = (infile "path" [opt])
•x = (fscanf fp "%f %s\n" x c)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 31

THE CADENCE DATABASE

Objects in the DataBase

§ All objects used in cell views (wires, pins, labels, shapes,
contacts,..) are stored in a data base.

§ Access to objects is via their unique data base object
identifier, or ID

§ Objects have properties (or ‘attributes’) / members
§ The access operator to the properties is ~>
§ A list of all attributes can be shown with ID~>?
§ Attributes & their values are listed with ID~>??

§ Usefull: ‘~>’ threads through lists, i.e. list~>.. is possible!

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 33

Getting access to an object (get the ID)

§ With an open cell view (layout or schematic), the command
(geGetEditCellView) gets the ID

§ Direct access via (dbOpenCellViewByType …)

VLSI Design - Skill

These are all the
properties of the

cell view

commands of
graphic editor
(layout) mostly
start with ge...

© P. Fischer, ZITI, Uni Heidelberg Page 34

dbGet

§ Data base objects have (multiple) attributes (key / values -
pairs)
• For instance ‘objects’, ‘instances’, ‘bBox’,…

§ The can be accessed by the dbGet function
• See skdefref

§ A short hand notation for attribute lookup is the ~> operator

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 35

Looking at cell view properties

§ Once we have a view ID, we can access the properties:

§ The properties
instances,vias,shapes,layerPurposePairs (= lpp),..
are again lists of object IDs

§ They can be studied further:

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 36

Modifying Objects

§ The properties can be modified and affect the open view
immediately:

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 37

Modifying Objects - 2

§ The layerPurposePairs (lpp) defines the object layer
§ It can be modified...

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 38

Creating New Objects

§ There are many commands to create objects, see skdfref
§ For instance, create a new rectangle with
(dbCreateRect CellViewID lpp list(x:y x:y)):

VLSI Design - Skill

x = ID of open
cell view

© P. Fischer, ZITI, Uni Heidelberg Page 39

Common Errors

§ Common error:
• No blank between a name and ‘(‘ in 'lisp' mode:
(setq a(plus a 3))

• This gives an error because a(is interpreted as function!!!

§ Difference Integer / Float:
•(setq n 3)

•(setq x n/2) → x =1 !!! (integer division!)
•(setq x (float n)/2) → x =1.5

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 40

Learning About Command Names

§ When writing own command, the procedure names used by
Cadence are sometimes difficult to find, despite the help
files.

§ Cadence tells you in the CIW which procedures are used by
the build-in commands if you enable this under

§ CIW->Options->Log Filter->\a

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 41

SOME USEFUL APPLICATIONS OF SKILL

Defining a Bindkey

§ A bindkey (for layout editor) can be defined using the call
(hiSetBindKey "Layout" "key" "(function …params…)")

• first parameter is the tool ("Layout", "Schematic",..)
• second is key ("1", "Ctrl v",…)
• third is the function that will be called

§ For instance, you can set the snap grid with this procedure:
(procedure (setSnapGrid snap)
window = (hiGetCurrentWindow)
window~>xSnapSpacing = snap
window~>ySnapSpacing = snap
(printf "Setting Snap Spacing to %.3f\n" snap)

)

§ Install this with
(hiSetBindKey "Layout" "1" "(setSnapGrid 0.01)")

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 43

Managing Bind Keys

§ You can see all assignments to bind keys under
CIW → Options → Bindkeys

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 44

Adding a User Menu and One Menu Item
(procedure (PrintNumberOfInstances) ; the procedure we install
(setq inst (deGetEditCellView)~>instances) ; (better use 'let'!)
(printf "Found %d instances:\n" (length inst))
(foreach s inst (printf "%L\n" s->cellName))

)
MyMenuShowObjects = (hiCreateMenuItem ; define an menu item
?name 'PrintNumberOfInstances ; for later reference
?itemText "Show # of Instances & types" ; Text for menu item
?statusTip "Show # inst & type" ; shown in status bar
?callback "PrintNumberOfInstances"

)
hiCreatePulldownMenu(; define a menu
'MyMenu ; for later reference
"MyFirstMenu" ; text for menu (in bar)
list(MyMenuShowObjects) ; all menu items in the menu

)
(procedure (InstallMenu args) ; installation routine which
(hiInsertBannerMenu ; adds the menu to the 'Banner' bar
args->window ; the window
MyMenu ; name of menu to add
(length (hiGetBannerMenus args->window)) ; menu position (0=left)

))
(deRegUserTriggers "maskLayout" ; tell cadence to call (InstallMenu)
nil nil 'InstallMenu) ; whenever a layout is opened

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 45

Loading Things Automatically

§ SKILL code can be executed automatically:

§ At startup of Cadence, the file .cdsinit is executed.
In this file, you can for instance define shortcuts

§ When the layout/schematic editor is started, the files
layEdit.menus or schematic.menus in directory menus
(in the working dir) are executed
• If you want to create your own menu, put them here.

§ You can use some predefined menus (from SuS):
• Create subdirectory menus (with command mkdir menus)
• In this directory, create symbolic links with
ln -s /shares/tools/SKILL/layEdit.menus layEdit.menus
and
ln -s /shares/tools/SKILL/schematic.menus schematic.menus

• You need to restart Cadence…
VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 46

Defining a Parameterized Cell

§ You can create a fully new cell with Skill (layout, symbol,…)
§ This cell can contain parameters which change its content
§ A function defines how the cell looks in dependence of the

parameter
§ Example: A Pad with

• an opening in layer "PAD" specified by two parameters (x,y)
• metal6 around “PAD” with a 1µm extension
• metal5 of similar size, but only if a (parameter) flag is set

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 47

PCELL Definition (here: for Layout)

(pcDefinePCell
(list (ddGetObj ”someLibrary") "TestPad" "maskLayout") ; the cell to create
(
(Width "float" 10) ; parameters with type and default
(Height "float" 6) ; type can also be given in quotes “float”
(PutM5 "Boolean" nil) ; a flag

)
(let ; The code. Better use 'let' for local variables!
(; local variables:
(lppM5 '("ME5" "drawing")) ; define a lpp for later usage
(Overlap 1.0) ; overlap of metals around PAD
MetalShape ; variable used internally later

)
; content starts here

(setq MetalShape ; define larger metal shape for later
(list -Overlap:-Overlap Width+Overlap:Height+Overlap)

)
(dbCreateRect pcCellView '("PAD" "drawing") (list 0:0 Width:Height))
(dbCreateRect pcCellView '("ME6" "drawing") MetalShape)
(if PutM5 (dbCreateRect pcCellView lppM5 MetalShape))

) ; end let
(return t)

)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 48

Note: Make sure to use the correct type of "

Instantiating the PCELL

§ The 3 parameters can be changed

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 49

Note on PCELL

§ Procedures should not be used in pcells, because they
must be available at every evaluation of the pcell.

§ Loading them via cdsinit is ok for interactive work, but not
for some tools (like LVS with Assura)

§ A solution is to load the procedures via the file libInit.il
which must be located in the corresponding library
directory.
• (found by J. Klamroth here:
https://community.cadence.com/cadence_technology_forums/f/custom-ic-
skill/17440/how-to-use-procedure-inside-pcdefinepcell)

§ Be careful with procedure names to avoid conflicts!
§ (If remains to be checked that this works with all tools which

evaluate pcells)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 50

https://community.cadence.com/cadence_technology_forums/f/custom-ic-skill/17440/how-to-use-procedure-inside-pcdefinepcell
https://community.cadence.com/cadence_technology_forums/f/custom-ic-skill/17440/how-to-use-procedure-inside-pcdefinepcell

Some More Useful Commands…

§ Open a view:
(dbOpenCellViewByType lib cell view type flag)

§ List of objects marked with mouse:
(geGetSelectedSet)

§ Get Coordinate of mouse:
(hiGetPoint (hiGetCurrentWindow))

§ Create a ruler:
(leCreateRuler view (list 0:0 0:10 10:10))

§ Move intersections of objects in lists to a cell on layer:
(dbLayerAnd cell layer list1 list2)

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 51

(Extracting Schematic / Symbol / Layout to SKILL)

§ To help in development of PCELLs, the content of open
view can be converted into the SKILL code of a PCELL:

§ From the open view, execute (pcHICompileToSkill) in the
CIW

§ Select schematic or symbol view, chose a SKILL file name

VLSI Design - Skill © P. Fischer, ZITI, Uni Heidelberg Page 52

