

Mixed Mode Simulation

P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation ZITI, Uni Heidelberg

(Based on slides from Florian Erdinger)

VLSI Design - Mixed Mode Simulation

© P. Fischer, ZITI, Uni Heidelberg Page 1

Why Simulate in Mixed Mode?

- Most analog circuits need interaction with digital circuits
 - control logic to steer the analogue part
 - processing / verification of results
- Simple digital functionality can be obtained by spice sources (vpulse, vpwl,...), but this is tedious, inflexible,...
- (More flexibility by using Verilog-A. Good for simple extensions (DAC..), but not suited for large digital parts)

\rightarrow Mixed Mode Simulation:

- Digital parts:
 - Hardware Description Language (Verilog, VHDL) very flexible
 - Digital simulator
- Analog parts:
 - Schematics
 - Analog simulator

- Two simulators run in parallel
 - Digital Simulator for digital part
 - Analogue simulator for analogue part
 - Interface Elements translate between both domains
- Time must be (internally) synchronized

- Advantages:
 - Complex steering / logic easy to implement
 - **Much** faster simulation in large designs (once it runs...)
- Drawbacks: More complex. Long simulator startup.

- There are many way to do this.
- I show here just one solution, which is easy to use for a start, but not so well suited for larger designs

What do we Need?

A SIMPLE EXAMPLE

A Simple Example

- The following slides show how to set up a simple mixed mode simulation in the *Virtuoso ADE* environment with the following steps:
 - 1. Creating a Verilog module with a matching symbol
 - 2. Creating a *top level simulation schematic* instantiating the Verilog symbol and some analog circuit connected to it
 - 3. Creating a 'config' view of the top level simulation schematic, which describes the hierarchy
 - 4. Specifying 'Interface elements' which connect the digital and analog domains.

Before You Start:

- We need to make the 'connectlib' available:
- In file cds.lib, add the line

DEFINE connectLib
/opt/eda/XCELIUM2203/tools.lnx86/affirma_ams/etc/connect_lib/connect
Lib

- You can also use the Library Manager:
 - In the Library Manager: Edit \rightarrow Add Library Path...
 - Edit \rightarrow Add Library
 - ... (name must be connectLib)
 - Save
- This must only be done once, library definition is saved in cds.lib

- The editor of your choice can be been specified in .cdsinit
 - editor="..."
- You can also use the shell: export EDITOR=gvim
- or the CIW:

editor="gvim"

1. Creating a New Verilog Module

- In 'Library Manager:
 - File \rightarrow New \rightarrow Cell View
 - 'Cell': name of verilog module
 - 'View': 'verilog' (Non-Capital!)
 - 'Type': Verilog
- The Cadence text editor opens with a 'naked' Verilog module

1. Creating a Verilog Module with its Symbol

- Fill the Verilog module with some code.
 - The code need *not* be synthesizable
- For instance
 - initial out = 1'b0; always #10 out <= ~out;</pre>
 - (1 time step = 1 ns by default)
- When you close the text file, it is automatically parsed. Correct it until there are no errors left.

When the Verilog file is closed, Virtuoso offers to create a symbol if there is none (or modify it if it does not fit to the declared interface). Create the symbol.

- Error messages of Verilog compilation end up in .cadence/dfII/TextSupport/Logs/...
- In my editor, the file can be seen with View->Parser Log

2. Creating A Top Level Simulation Module

In 'Library Manager'

- File \rightarrow New \rightarrow Cell View
- Create a schematic

Put an instance of your Verilog module, i.e. the symbol

- If the Verilog contains *parameters*, the symbol inherits them.
 - To see them: In the instantiated symbol, select CDFParameter -> Verilog (not 'Use Tool Filter')
- Add some analog circuit (symbols, primitives, sources, ...)
- 'Digital' and analog circuits can directly be connected

3. Creating the Simulation Configuration View

	New Fi	le	0 E			
File	VI 51202	20				
	rary VESI2020					
Cell	MIXEU.	311112		-11		
View	contig	g				
Туре	contig					
- Application	Hierarc	hy Editor	-			
	se this applicati	on for this t	vne of file			
Library path	file		ypeornie			
	nie	New	Configuration		20	
Top Cell —						
Library: U	.052013					
Cell:	MixedSim					
View: s	chematic					
Global Bir						
			Use Temp	late	$\odot \odot \odot$	
Library Li	- Template -					
View List:	Name:	AMS				
Stop List:	From File:	/home/fiscl	her/hierEdito)r/template	s/AMS	
Constraint						
Descriptio			Cancel	Annlu	Holn	
Description			Cancer	-phil	Tielp	
	OK	Cancel	Lleo Temp	loto –	loin	

- The AMS simulator needs a 'config' view for the simulation schematic
- In 'Library Manager:
 - Select your simulation schematic
 - File \rightarrow New \rightarrow Cell View
 - 'Type': config (name changes to 'config')
- Note that 'Application' switches automatically to 'Hierarchy Editor'
- In the next window: change 'View' to 'schematic'
- Click 'Use Template' (bottom)
 - Select 'AMS' (this will be our simulator)
 - OK
- OK

3. Changing 'config' view with the Hierarchy Editor

- The config view is edited in the 'Hierarchy Editor' and configures the netlisting procedure for simulation.
- Cells can have multiple representations, for instance a 'verilog' view and a 'schematic' view at the same time.
- The config view specifies the view to use for netlisting for each cell (or even instance)

- Virtu	oso® Hierarchy Edit	tor: New Configura	tion (Save Neede	d) 🔶 🗆 🗙	
aunch <u>F</u> ile <u>E</u> dit <u>V</u> iew	/ <u>H</u> elp			cādence	
🗅 🗁 🖯 🖉 «	D- 🥱 🥐 🛈 🖬 🤤	🗄 📋 🔞 🔍 Search		Update Needed	
op Cell		? 5 ×	Global Bindings	? 5 ×	
Library: VLSI2020			Library List: basic ana	logLib	
Cell: MixedSim2			View List: module s	chematic spectre symbol	
View: schematic			Stop List: symbol s	pectre	
Open Edit	A	DE L ADE Explorer	Constraint List:		
Table View Tree View					A cell can have several view, e.g. 'verilog', 'functional' or 'schematic'
Cell Bindings					The view to use is specified here
Library	Cell	View Found	View To Use	VIEW LIST	
VLSI2020	Inverter	schematic	schematic	verilogams veriloga beha	
VLSI2020	MixedSim2	schematic		verilogams veriloga beha	
VLSI2020	MyFirstStimulus	verilog	verilog	verilegene i g	Pight Click to soloct
analogLib	cap	spectre		verilogams veriloga beha	Right Chick to Select
analogLib	res	spectre		verilogams veriloga beha	
analogLib	vdc	spectre		verilogams veriloga beha	

4. Adding the Interface Elements

- There are built-in Interface Elements (IE) supplied with the simulator (which can also be customized if necessary)
- They are located in the 'connectLib'
- The IEs to be used are selected in the ADE when setting up the simulation (specifics see later)
- They are inserted automatically (do not have to be placed in the schematic manually)

^{RUPRECHT-KARLS-} UNIVERSITÄT HEIDELBERG

Setting Up the Simulation and Outputs

Launch Session S	etyp Analyses Variables Qutputs Simulation Results Iools Help cāde	n c e
Nane	Value Value Choosing Simulator/Directory/Host Virtuoso® An ?	
> Results in /tmp mouse L: 4(8) Simulator/	/ADE-Sim-erdinge Plot after simula@uto Plotting mocReplace M: Status: Ready T=27 C Simulator: ams(Spectre)Mode: batch State: tmps)	R:

to ⊗ Launch S <u>e</u> s	Virtuoso® Analog Design Environment (1) - playground SIM_MixedModeExample config ⊘ ⊘ ⊗ sion Setyp Analyses Variables Qutputs Simulation Results Icols Help cadence
16 01	🚰 27 🛛 🔉 🎾 🙆 🗹 🗁
Design Var	Analyses ? 🗗 X
Name	🕐 🛞 Choosing Design Virtuoso 🖲 Analog Desi 🥐 🕑 🚫 🛞 🦉 Charas
L	ibrary Name playground
C	ell Name SIM_GCC SIM_LATCH_SYNC SIM_LFSR_3 SIM_LVDS_10Board SIM_NDSGLE_FF SIM_Inv SIM_COGLE_FF SIM_lankage SIM_ringosc
V	iew Name config S pen Mode edit pread
> Results	n /tmp/ADE-Sim-erdinge / 100 ar ter Simularoso _ + 1000 ang Replace .
4(8) Stop	R: Statue: Ready I=27 _ C Simulator: ame(Spectre)Mode: hatch State: tanetate
	Toracet words inter of other ansighted exiting and the state

- Open the top level simulation schematic
- From the menu: Launch \rightarrow ADE
- Setup \rightarrow Design
 - Change 'View Name' to 'config' (which we have created before)
- Setup → Simulator/Directory/...
 - Change 'Simulator' to 'ams'
- Add a transient simulation

- AMS saves nothing by default:
- In Simulation window, go to 'Outputs \rightarrow Save All...'
- In the category NETS, select 'all' to save all node voltages
 - If you want to also save nets INSIDE of modules / instances, select Levels -> 'all'
- If you want to look at currents:
 - In the category CURRENTS, select 'all'
 - Do not do this all the time, because the larger choice of signals makes it more confusing later to select the right ones...

(Connect Rules)

- This is a bit tricky. The mechanism has changed depending on software version.
- At the moment, you can access the connect rules from ADE->setup->Connect Rules
- In the window, go to 'advanced setup'. All interfaces are set here. An easy model is a series resistor and a rise time. Set them to small values.

					<code>≻● Stim<u>u</u>li</code>
Ĵ	ams1: Interface El	ement (IE) Setup	^ ×		Simulation rics
Interface Element/IE-ca	ard Based Setup(OSS/UNL) 🛛 Conne	ct Rule/Connect Module Based Setup			Connect Rules/IE Setup
Enable Scope	Scope Applied To Supply Type	y Value Updated Parameters			EM/IR Analysis
✓ global	Value	1.8 connrules=connectLib.CR_full_fast;disci	oline		MATLAB/Simulink
-		<click add="" card="" here="" hew="" le="" to=""></click>			Environment
Advanced Setun	Enable IF Report Always Lise	E-card Based Setup	× E Card		
E control and parameters			Learo		la out
accuracv	🔘 libera 🖲 mode 🔾 conse				
vlaaus	Coi SS INF DV				
Basic Extended EE	inet				
Parameter	Value				_
rout	10			Series F	K
	[···]			And	
tr	0.2n		=		
			\leq	Rise tim	e
<					
-					
		OK Cancel Apply Def	ault <u>H</u> elp		

Launch Session

📂 🧽 🦵

Name

Design Variables

Setup Analyses Variables Outputs

High-Performance Simulation ...

Simulator/Directory/Host ...

Model Libraries ...

Temperature ...

💾 Design ...

3

- If you want to use active devices, like transistors, the models must be defined in Setup->Model Libraries
 - You may have to pick a 'section' (right column)
- If they are not set, a quick way to get them is:
 - Save the state of the (ams) simulation to a view This view is visible in your linux library path under /libname/cellname/ams_state...
 - In this cell, there is a file modelSetup.state, which is probably empty (contains nil)
 - Copy a 'modelSetup.state' file from another simulation state, containing the library paths.

Running and Viewing the Simulation

- Run the simulation ('play button')
- In the log file you can see that there are several steps:
 - Compilation
 - Elaboration
 - Simulation
- Verilog \$display task prints to the log file
- Open the results browser to look at the results: in the ADE menu: Tools → Results Browser …

Select Outputs in the left windows

Selecting Waveforms

- To select digital waveforms, open the 'results browser'
 - for instance from the schematic window (next to 'calculator icon')
 - Or from the simulator -> tools -> ..
 - -> You get a pane with 3 entries (calc., res. browser, results)
- Select
 Sim->tran->Top
 - In Verilog Instance, you can select internal variables.

The Results Browser

Sample output

Here, The inverter is simulated with its ,*functional*⁴ model:

Library	Cell	View Found	View To Use
VLSI2020	Inverter	functional	functional
VLSI2020	MixedSim_Top	schematic	
VLSI2020	MyFirstStimulus	verilog	verilog

module Inverter (output out, input in); assign out = ~in; endmodule

'outinv' is a digital signal

Sample output

• Now, The inverter is simulated with its *schematic* model:

Library	Cell	View Found	View To Use
UMC_18_CMOS	N_18_MM	spectre	
UMC_18_CMOS	P_18_MM	spectre	
VLSI2020	Inverter	schematic	schematic
VLSI2020	MixedSim_Top	schematic	
VLSI2020	MyFirstStimulus	verilog	verilog

'outinv' is an analogue signal

CHALLENGES IN ANALOGUE / MIXED MODE DESIGN

Challenges in Analogue Design. Noise

- Noise (physical, unavoidable)
 - Thermal noise in resistors and MOS is rather well described and quite technology independent
 - 1/f noise in MOS technology dependent and not well modelled.
 - More details in lecture 'Advanced Analogue Building Blocks'
- Remedies:
 - Chose insensitive circuit topologies, avoid resistors
 - Reduce noise by reducing g_m of MOS where possible (for instance in current sources)
 - Reduce 'relative' noise by increasing current in MOS
- Study with
 - Mathematical analysis
 - AC noise simulation (see later)
 - transient noise simulation (see later)

Device Mismatch

- From fluctuations in fabrication
- $\bullet \rightarrow \text{Mismatch in current mirrors}$
- $\bullet \to \text{Offset voltage of differential amplifiers}$
- $\rightarrow \dots$
- Remedies:
 - Use large devices to reduce geometric uncertainties
 - Use identical layout, common centroid, guard devices,...
 - For MOS: Use high V_{GS} to reduce effect of V_{Th} mismatch
 - See slides on layout...
- Study with
 - Back-on-the envelope calculations
 - Monte Carlo Simulations (see later)

VDD

Challenges in Analogue Design

- (Static) power supply voltage drops • From 'IR-drop' in supply traces VDD-2×R×I₀ **Remedies:** • Separate voltage rails for different circuit blocks Voltage drop compensation circuits Circuits with good (low freq.) power supply rejection (PSRR) Multiple (local) references • Trimming VDD Study by:
 - Simulation of extracted design (or estimated resistances)

Challenges in Analogue Design

- (Dynamic) power supply glitches
 - Shortly increased current consumption leads to extra voltage drop and thus quickly changing supply voltage
- Measures against Supply issues
 - Separate supplies or supply traces
 - Local decoupling of power ('energy storage')
 - Local decoupling of bias signals (between gate and SOURCE!)
 - Circuits with good high freq. 'power supply rejection ratio'
 - Differential circuits
- Study with:
 - Transient sim. of extracted design (or estimate res.!)
 - Often must simulate large circuits and special situations

Trick: Multiple supply traces

Use 'clean' and 'noisy' supply traces:

Mixed Mode Challenges

- Digital and Analogue on one chip:
 - Digital activity has very varying currents (clock edges, different data patterns) and leads to dynamic glitches on power supply.
 - Large digital signals can (ac-) couple to sensitive analogue nodes:
 - From trace to trace through parasitic C
 - From MOS gate to channel (cap is high!)
 - From bulk/well to channel
- Some Measures:
 - Separate supply / ground NETs for analogue / digital (vdda, vddd)
 - PMOS well or NMOS substrate (triple well NMOS!) connected to clean (analogue) supply / ground
 - Metal shielding between traces (but connect shield to where ?)
 - Distance between analogue and digital (group analog/digital)
 - Use differential structures so that glitches cancel out
 - ...

EXERCISE: MIXED MODE SIMULATION

Exercise: Clock Generation

- Step 1: Create a 'ClockGenerator' cell
 - Generate a Verilog view
 - Use a parameter
 - parameter del=10;
 - to set the clock period. (Parameters can be overwritten in the properties of the symbol. You may have to change the 'CDF Parameter of view' combo box to 'verilog')
 - Follow all steps until you have the symbol
- Step 2: Create a new schematic (for simulation)
 - Instantiate the ClockGenerator
 - Add an inverter or at lease a RC element to do something with the clock
- Step 3: Mixed mode simulation
 - Follow all described steps to setup and run a mixed mode simulation
 - Browse through the results

- Step 4: Divide by 2:
 - Create an edge triggered flipflop from two latches (or take if from a SUSLIB..)
 - Use it to divide the clock by 2.
- Step 5: Checking via Verilog: 'ClockChecker' cell
 - Make a Verilog module which has a clock output and an *input* for the divided clock
 - Use Verilog code to verify that the clock is divided correctly
- NOTE: When re-running the simulation, the results in the lower hierarchy might be missing despite for 'save all'.
 → Closing and re-opening the results browser should fix this.