RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Exercise 2: Designing with (Schematic) Hierarchy

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

© P. Fischer, ZITI, Uni Heidelberg Page1

Implementation

- 1. You can create a *schematic* and a *symbol* view in the same *cell* independently.
 - When you save either cell, the number/names/types of the pins are checked against the other cell. Create Check Options Migrate Window Calibre
- 2. You can also create the 'second' view *automatically*: Create → Cellview → From CellView
- Two further forms are displayed..

[@partName] out

- This works in both directions
 - Symbol \rightarrow Schematic
 - Schematic \rightarrow Symbol

© P. Fischer, ZITI, Uni Heidelberg Page2

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

EXERCISE A: RING OSCILLATOR

A Ring Oscillator consists of a chain of N inverters connected to a ring:

- When N is odd (ungerade), the circuit oscillates
 - Understand why !
 - What happens if N is even ?
- To start in a well defined state, and to turn on/off the oscillator, we can add a NAND2 gate:

• You could also add a NOR2 gate. What is the difference ?

Schematics / Symbols

- Implement such an oscillator
 - Use global power nets vddd! and gndd! and substrate gnd! (symbols from analogLib)
 - Use transistors N_18_MM and P_18_MM from the technology library UMC_18_CMOS
- Create 3 schematics with corresponding symbols:
 - Inverter
 - use pins in, out
 - use an NMOS with W/L = 0.5u/0.18u and a 3 times wider PMOS
 - NAND2
 - use pins in1, in2, out
 - use MOS such that the drive strength is roughly as for the inverter
 - Oscillator
 - use pins run, out
 - use (for instance) 10 inverters
 - use a compact notation, i.e. do NOT draw 10 inverters

- To make the schematic compact, and to prepare for very long inverter chains, instantiate N inverters in one step:
 - Inv<9:0> (for N=10)
- Label the nets correspondingly.

Simulation

- Create another schematic SIM_RingOsc for simulation
- Instantiate
 - the oscillator
 - the power supply source (of 1.8 V)
 - a vpulse source to turn on the oscillator after 5 ns.
- Connect gnd! and gndd! with a 0V voltage source
- Does it oscillate ? What is the oscillation frequency ?
 - (Use pins 'a' and 'b' in the waveform display)
- What follows for the delay of one inverter (neglecting NAND2)
- Change your circuit to N=50 or so and repeat.
- Such circuits are often used to easily measure the very small delay of an inverter or other cells

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

EXERCISE B: SET-RESET FLIPFLOP

Creating the Cells

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

A Set-Reset Flipflop (SF-FF) can be implemented by the

following schematic

- Create Schematic and Symbol of a NOR2
 - Use global nets vddd!, gndd! and gnd! for supply / ground / bulk
 - Use two input pins I0, I1 and one output pin Q
 - Use minimum size NMOS (N_18_MM) and PMOS (P_18_MM) from the UMC library UMC_18_CMOS
- Create Schematic and Symbol of the SF-FF
 - Use pin names as shown above

Simulation

- Create a simulation schematic and simulate the SR-FF
 - Do not forget the voltage supply source (use 1.8V)!
 - Add *vpulse* sources from *analogLib* to generate stimuli, for instance:

(the pulses should be a few Nanoseconds long)

- Is everything as expected?
- What is the delay between inputs and Q and !Q?
- What happens if Set=Reset=1?
- Add 1pF capacitive loads to the outputs and see what happens!