Exercise: SKILL

Prof. Dr. P. Fischer
Lehrstuhl für Schaltungstechnik und Simulation Uni Heidelberg

Exercise A ('warmup'):

- Calculate 1 + 1
- What is Sinus (1)?
- Find a way to get π
- Define two variables x and y, set them to 2 and 3 and multiply them
- Let p be a list of two float values
- Get the first and second element of the list p
- Add the first and second element directly (in one command)
- Define a function which outputs the double of a (float) argument
- Define a function which takes a list argument and outputs the sum of the $1^{\text {st }}$ and $2^{\text {nd }}$ elements.

Exercise B: Area of a Rectangle

- Calculate the area of a rectangle (a list of two points)
- Define a function area which does this

For the rectangle
-(setq A list(1:2 3:4))
your function

- (area A)
should return
- 4

Exercise C: Sum of Elements

- Define a function sumup which calculates the sum of all elements of a list
- Assume all elements are numbers
- Write two different versions at least:
- Using foreach
- Explicitly picking the nth element (i.e. using an index)
- You could try two more versions:
- Stepping through the list with car / cdr
- A recursive version

Exercise D: Objects in a Layout

- Create a new layout. Create a rectangle on metal1 and a path on poly by hand.
- From the CIW store the ID of the view in myID
- What is myID~>shapes ?
- Examine the two objects
- In the CIW: Assign a new value to the bounding box of the rectangle and check what happens in the open cell view.
- Create a new rectangle using the command from the lecture
- Search in the manual how to place a circle or a path.

Exercise E: Making a Binned Circle

- Write a routine to create a circle (quadrant) from many small rectangular stripes
- Fix the layer to '("ME2" "drawing")
- Fix the origin at $(0,0)$
- Input parameters are
- the outer radius
- the (x) step size of the strips
- It is sufficient to generate a quadrant, i.e. We define a procedure 'quadrant' and call (quadrant radius step)

- For a start assume that radius is an integer multiple of step
- Make sure the y-coordinates are on 'some' grid, for instance multiples of step

Exercise E: Maths

- The formula for the 'ideal' area of a slice is obtained by integration:

```
ln[1]:= f[R_, 和]=\sqrt{}{\mp@subsup{R}{}{2}-\mp@subsup{\mathbf{x}}{}{2}}
Out[1]= \sqrt{}{R2- (2}
ln[14]:= Plot [f[1, x], {x, -1, 1}, AspectRatio }->\mathrm{ 1/2, Frame }->\mathrm{ True, Filling }->\mathrm{ Axis]
```


[^0]
Exercise F: Define a Key ShortCut

- Check in your .cdsinit file how the shortcuts for changing the grid are defined
- Change the message that is printed
- Add another key for a new grid
- Define a function which places a rectangle ($1 \times 1 \mathrm{um}^{2}$) at the cursor position
- You get the cursor position with (hiGetPoint (hiGetCurrentWindow))
- Associate the function to a bind key

Exercise G:

- Create a PCELL which generates the quarter circle from exercise E

Exercise H:

- Make a PCELL which creates a Waffle transistor like this

- Make small unit layout cells (core/leftright/top/bottom).
- The PCELL just composes the layout from these elements

[^0]: $\ln [11]:=\$$ Assumptions $=R>0 \& \& x 1>-R \& \& x 1<R \& \& x 2>-R \& \& x 2<R \& \& x 1<x 2$;
 $\ln [12]=$ Integrate $[f[R, x],\{x, x 1, x 2\}]$
 jut $[12]=\frac{1}{2}(-x 1 \underbrace{\sqrt{R^{2}-x 1^{2}}}_{\text {X1S }}+x 2 \sqrt{R^{2}-x 2^{2}}+R^{2}\left(-\operatorname{ArcTan}\left[\frac{x 1}{\sqrt{R^{2}-x 1^{2}}}\right]+\operatorname{ArcTan}\left[\frac{x 2}{\sqrt{R^{2}-x 2^{2}}}\right]\right))$

