
Graded Exercise VLSI Design WS24/25:

Binary Multiplier

Prof. Dr. P. Fischer

Lehrstuhl für Schaltungstechnik und Simulation
Uni Heidelberg

© P. Fischer, ZITI, Uni Heidelberg Page1VLSI Design WS24/25: Graded Exercise

The Task

§ In this exercise, you should create a full custom
implementation of a digital binary multiplier circuit
• The input are two N bit binary numbers A, B, i.e. bus signals

A⟨N-1:0⟩ and B⟨N-1:0⟩
• We restrict ourselves to positive values, i.e. A≥0, B≥0
• The result is a 2N bit wide SUM vector
• You may choose N=4…8. If you work systematically, there is

nearly no extra effort for larger N.
§ We will implement the multiplier as a very simple ‘array

multiplier’. This is not very efficient, there are much more
clever implementations (‘Wallace Tree’, ‘Booth Encoding’)

§ You should do
• A hierarchical schematic
• Analog simulations of basic elements
• A Mixed Mode Simulation of the full multiplier
• A nice, compact layout which is DRC and LVS clean.

VLSI Design WS24/25: Graded Exercise © P. Fischer, ZITI, Uni Heidelberg Page2

How Multiplication Works

§ Multiplication of integers can be done with the ‘school’
method.

§ One input number (here A=13) is multiplied with all digits of
B (here 1234) -> ‘partial products’

§ The partial products are added, respecting digit position
§ The summing can create overflows (carry) from a lower to a

high digit position

VLSI Design WS24/25: Graded Exercise © P. Fischer, ZITI, Uni Heidelberg Page3

13 x 1234
52

39
26

13
Carry ¹ ¹
Sum: 16042

13 x 4
13 x 30 = 13 x 3, shifted 1 to the left

13 x 200 = 13 x 2, shifted 2 to the left
13 x 1000 = 13 x 1, shifted 3 to the left

‘partial product’

A B

Multiplication With Binary Numbers

§ In binary, digits can only take 0/1, so the row multiplication
is trivial:
• A x 0 = 0
• A x 1 = A

§ We need just an AND gate on all bit positions!

VLSI Design WS24/25: Graded Exercise © P. Fischer, ZITI, Uni Heidelberg Page4

b0b1b2a0a1a2a3

A × b0

A × b1

A × b2

A B

a0a1a2a3

bi

Summing Up

§ Adding up the upper 2 rows requires a digital adder
§ This is made up from full adder circuits:

§ A carry signals propagates from the least significant digit to
higher digits

§ The first position has no carry-in, so a Half Adder can
(could) be used.

§ The sum is then added to the next row etc.
§ Overall, N-1 rows of adders are required.

VLSI Design WS24/25: Graded Exercise © P. Fischer, ZITI, Uni Heidelberg Page5

cout
0
0
0
1
0
1
1
1

sum
0
1
1
0
1
0
0
1

cin b a
0
0
0
0

0
0
1
1

0
1
0
1

1
1
1
1

0
0
1
1

0
1
0
1

X1
Y1

cincout
b a

sum1

sum

X0
Y0

cincout
b a

sum0

sum
0

X2
Y2

cincout
b a

sum2

sum
...

The Full Adder

§ You can learn about digital logic in the slides of ‘Digitale
Schaltungstechnik’ in WS21/22
• Slides ‘Kombinatorik und Flipflops’, p15ff.

§ There are many ways to make a full adder:
• You find an efficient transistor level implementation of a full

adder in the slides
• You can also make it from two half adders
• Or you use basic gates

VLSI Design WS24/25: Graded Exercise © P. Fischer, ZITI, Uni Heidelberg Page6

1. Schematic

§ Make schematics+symbols of the AND gate and the Full
Adder.

§ You may also make a schematic/symbol of an adder bit
with the AND in front.

§ Make a schematic+symbol of an N bit adder. It may be
clever to have a ‘normal’ input and an input which is
‘ANDed’ with a control bit. Use bus notation to keep the
schematic simple!

§ Assemble the multiplier from the adders and some more
stuff. Use bus notation!

VLSI Design WS24/25: Graded Exercise © P. Fischer, ZITI, Uni Heidelberg Page7

(Optimizations)

§ To optimize the circuit a bit you could
• Use a NAND instead of the AND and handle the inverted signal

somehow ‘later’
• Similarly live with inverting Full Adders
• Use only a Half Adder at the first position

§ As mentioned, there are more efficient ways to add up all
the bits, see ‘Wallace Tree’, ‘Dada-Tree’,…

VLSI Design WS24/25: Graded Exercise © P. Fischer, ZITI, Uni Heidelberg Page8

2. Analogue Simulation

§ Simulate the basic cells.
• Check that behavior is correct for all bit combinations.

§ Simulate the adder for some values of X,Y
§ What is the worst case speed (when a carry propagates

fully through the chain) ?

VLSI Design WS24/25: Graded Exercise © P. Fischer, ZITI, Uni Heidelberg Page9

3. Mixed Mode Simulation

§ Check with a mixed mode simulation that the adder works
correctly for some random numbers.

§ Check the full multiplier for some ‘typical’ cases and for
random numbers.

§ How long does it need in a worst case until the result is
complete. What is the ‘critical path’?

VLSI Design WS24/25: Graded Exercise © P. Fischer, ZITI, Uni Heidelberg Page10

4. Layout

§ Make a compact layout of the FullAdder. Arrange the pins,
power, … such that you can place cells next to each other.

§ Make the layouts of all cells in the schematic hierarchy.
§ Try to make the top cell rectangular by placing the adders

under each other (not shifted, as shown left)

§ The layout must be DRC and LVS clean

VLSI Design WS24/25: Graded Exercise © P. Fischer, ZITI, Uni Heidelberg Page11

Report

§ Provide a document (10-15 pages) with
• A summary of the task and how you solved it.
• Explanations on how the circuits work, why you chose them as

they are, and how you set up the hierarchy
• Schematics (just screen shots), using a decent hierarchy with

some explanations
• Simulation results (function, speed) with explanations
• Results of the mixed mode simulation + Verilog code
• A ‘nice’ layout (screenshots). Explain your reasonings.

VLSI Design WS24/25: Graded Exercise © P. Fischer, ZITI, Uni Heidelberg Page12

Bonus

§ For a very good grade
• your description should be complete and decently formatted
• Schematics should be tidy
• You may simulate transistor speed corners to see how slow the

circuit can get in the worst case.
• Layout should be rather compact (most space occupied my

MOS)

• You could implement an adder of variable size as a PCELL,
similarly for the full multiplier, so that you can instantiate a NxM
multiplier.

• You may have a look at the Wallace Tree concept, explain how
that works and why it is clever.

VLSI Design WS24/25: Graded Exercise © P. Fischer, ZITI, Uni Heidelberg Page13

